
AFRL-IF-WP-TR-2004-1532

WEAPON SYSTEM SOFTWARE
TECHNOLOGY SUPPORT (WSSTS)
Delivery Order 0008: Real-Time Java for
Embedded Systems (RTJES)

Edward Pla
The Boeing Company
Phantom Works/Network Centric Operations
P.O. Box 516
St. Louis, MO 63166-0516

MARCH 2004

Final Report for 21 September 2000 – 30 March 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

© 2004 Boeing Company

This work is copyrighted. The United States has for itself and others acting on its behalf an
unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is
subject to copyright restrictions.

Appendices A and B have been submitted to IEEE for publication in the Proceedings of the
2003 Real-Time Technology and Applications Symposium. If published, IEEE may assert
copyright. If so, the United States has for itself and others acting on its behalf an unlimited,
nonexclusive, irrevocable, paid-up royalty-free worldwide license to use for its purposes.

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION
SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC,
INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

/s/ /s/
MICHAEL T. MILLS JAMES S. WILLIAMSON, Chief
Project Engineer Embedded Information Systems Branch
 Advanced Computing Division
 Information Directorate

/s/
for EUGENE BLACKBURN, Chief
Advanced Computing Division
Information Directorate

This report is published in the interest of scientific and technical information exchange and does not
constitute approval or disapproval of its ideas or findings.

Do not return copies of this report unless contractual obligations or notice on a specific document
requires its return.

roushrv
Text Box
James S. Williamson

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 2004 Final 09/21/2000 – 03/30/2004
5a. CONTRACT NUMBER

F33615-97-D-1155-0008
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

WEAPON SYSTEM SOFTWARE TECHNOLOGY SUPPORT (WSSTS)
Delivery Order 0008: Real-Time Java for Embedded Systems (RTJES)

5c. PROGRAM ELEMENT NUMBER
78611F

5d. PROJECT NUMBER

3090
5e. TASK NUMBER

02

6. AUTHOR(S)

Edward Pla

5f. WORK UNIT NUMBER

 43
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Boeing Company
8. PERFORMING ORGANIZATION

 REPORT NUMBER

Phantom Works/Network Centric Operations
P.O. Box 516
St. Louis, MO 63166-0516

BOEING-STL-2004P0013

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/IFTA Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)

 AFRL-IF-WP-TR-2004-1532
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

© 2004 Boeing Company. This work is copyrighted. The United States has for itself and others acting on its behalf an
unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright
restrictions. Appendices A and B have been submitted to IEEE for publication in the Proceedings of the 2003 Real-Time
Technology and Applications Symposium. If published, IEEE may assert copyright. If so, the United States has for itself
and others acting on its behalf an unlimited, nonexclusive, irrevocable, paid-up royalty-free worldwide license to use for
its purposes.

14. ABSTRACT
The Real-Time Java for Embedded Systems (RTJES) Program identified features of Real-Time (RT) Java suitable for
meeting the challenges of future embedded information systems and defining the requirements of these features within the
infosphere domain. After an initial survey of RT Java implementations, this program benchmarked the first commercially
available RT Java implantation to provide an early assessment of the suitability of RT Java in the distributed real-time
embedded system domain. Benchmarking efforts focused on assessing the performance and determinism of systems using
RT Java. Two sets of tests were used. One examined characteristics of individual Real-Time Specification for Java (RTSJ)
features. The other investigated performance within an environment representative of an avionics application. The RTJES
program also performed a laboratory demonstration that showed the operational benefit of RT Java for network-centric
applications. The demonstration highlighted RT Java code mobility, distribution, and portability.

15. SUBJECT TERMS
Real-Time Java, distributed real-time embedded systems, RTJES

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 68
 Michael T. Mills
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3583
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

iii

TABLE OF CONTENTS
Section Page

1 Scope..1
1.1 Identification ... 1
1.2 Introduction... 1
1.3 Programmatics .. 1
1.4 Document Overview ... 5

2 Technical Approach ...6
2.1 Experimentation System ... 7
2.2 Hardware System.. 8
2.3 Software System ... 8
2.4 RTSJ-Related Requirements... 9

2.4.1 Thread ... 9

2.4.2 Scheduling... 9

2.4.3 Memory Management... 10

2.4.4 Synchronization .. 10

2.5 Application Requirements .. 10
2.5.1 Performance .. 11

2.5.2 Determinism.. 11

3 RTSJ Testing..12
3.1 Throughput.. 12

3.1.1 Thread Throughput ... 13

3.1.2 Thread Throughput With Contending Background Threads 14

3.2 Determinism.. 16
3.2.1 Periodic Start of Frame Determinism ... 16

3.2.2 Periodic End of Frame Determinism .. 17

3.2.3 Periodic Event Determinism... 18

3.3 Latency.. 19
3.3.1 Context Switch Latency.. 19

3.3.2 Priority Inheritance Latency ... 20

3.3.3 Synchronization Latency .. 21

3.3.4 Event Latency ... 22

3.4 Memory Management... 23
3.4.1 Allocation Time vs. Memory Area ... 23

3.4.2 Execution Time vs. Memory Area.. 25

3.4.3 Memory Area Entry/Exit .. 26

 iv

4 Application Testing..28
4.1 End-to-End Application Testing ... 28

4.1.1 Steady State Execution Time .. 32

4.1.2 Memory Usage.. 34

4.1.3 Duration of Operation... 35

4.1.4 Scalability ... 36

4.2 Flight Control Algorithm .. 37
4.2.1 Steady State Execution Time .. 38

5 Real-Time Java Laboratory Demonstration...40
5.1 Real-Time Java Demonstration Overview.. 40
5.2 Route Threat Evaluator ... 41
5.3 Distribution Benchmarks .. 42

6 Summary ..45
7 Reference Documents ..46

7.1 Boeing Documents.. 46
7.2 Other Documents .. 46

Appendix A IEEE RTAS ’03 Conference Paper ..47
Appendix B IEEE RTSS ’03 Conference Paper ...54
List of Acronyms and Abbreviations...58

 v

LIST OF FIGURES

Figure Page

Figure 1. Technical Approach... 6
Figure 2. Test Methodology for JVMs ... 9
Figure 3. Thread Inheritance in RT Java .. 12
Figure 4. Execution with Different Thread Types .. 13
Figure 5. Execution with Different Thread Types Results ... 14
Figure 6. Execution with Contending Background Threads... 15
Figure 7. Execution with Contending Background Threads Results................................ 15
Figure 8. Periodic Start of Frame Determinism.. 16
Figure 9. Periodic Start of Frame Determinism Results ... 17
Figure 10. Periodic Event Determinism.. 18
Figure 11. Periodic Event Determinism Results... 19
Figure 12. Context Switch Latency .. 20
Figure 13. Event Latency.. 22
Figure 14. Event Latency Results (microseconds) ... 23
Figure 15. Memory Area Class Inheritance.. 23
Figure 16. Allocation Time vs. Memory Area.. 24
Figure 17. Maximum Memory Allocation Time per Byte for Multiple Byte Objects 25
Figure 18. Execution Time vs. Memory Area .. 25
Figure 19. Execution Time vs. Memory Area Results.. 26
Figure 20. Memory Area Entry/Exit ... 27
Figure 21. Memory Area Entry/Exit Results .. 27
Figure 22. Leveraging of MoBIES Technology ... 29
Figure 23. 1X Test Scenario ... 30
Figure 24. Larger Scale Scenarios .. 31
Figure 25. Steady-State Execution Time 100X Scenario ... 33
Figure 26. Duration of Operation.. 36
Figure 27. Scalability .. 37
Figure 28. Flight Controls Algorithm ... 38
Figure 29. Throughput Performance... 39
Figure 30. Real-Time Java Demonstration ... 41
Figure 31. Route Threat Evaluator Scenario... 42
Figure 32. Distribution Benchmarks... 43

 vi

LIST OF TABLES
Table Page
1. Overview of Candidate JVMs.. 7
2. Software Packages ... 8
3. Frame Execution Times Measured at Frame Completion (milliseconds) 18
4. Priority Inheritance Latency (microseconds)... 21
5. Synchronization Latency (microseconds).. 21
6. RTSJ Feature Usage... 32
7. Infrastructure During Peak Operation (milliseconds).. 34
8. Start of Frame for 100X Scenario (msec) .. 34
9. Memory Usage... 35
10.Deterministic Performance of Route Threat Evaluator with 900 Threats 44

1

1 Scope

1.1 Identification

This final technical report (TR) describes the research results of the Real-Time Java for
Embedded Systems (RTJES) Program, Delivery Order 0008 under the Weapon System
Software Technology Support (WSSTS) Program, Contract Number F33615-97-D-1155,
for the Air Force Research Laboratory (AFRL).

1.2 Introduction

The Boeing Company has experimented with Real-Time Java1 (RT Java) as part of the
AFRL RTJES program. This 3 year program focused on the use of Java in hard and soft
real-time embedded information technology system applications. This research identified
features of the Java programming model that may be especially helpful in meeting the
challenges of future embedded system programs, and explored the suitability of these
features within these domains. In particular, the program aimed to experiment with Real-
Time (RT) Java Virtual Machines (JVMs) which implement the Real-Time Specification
for Java (RTSJ) developed under the Sun Microsystems Java Community Process (JCP).
The Boeing Bold Stroke Software Architecture has been leveraged to form an
experimentation foundation and benchmark for comparison of Java-based
implementation approaches. 2,3,4,5

1.3 Programmatics

The objective of the RTJES Program is to develop, demonstrate, and mature RT Java-
based embedded information systems applications. The RTJES effort involves
identifying features of RT Java suitable for meeting the challenges of future embedded
information systems and defining the requirements of these features within the infosphere
domain.

The RTJES Program requirements as stated in the “Statement of Work, Real-Time Java
for Embedded Systems (RTJES), Revision A” are listed in the remainder of this section
in italics. Following each requirement, a statement in regular font is provided showing
compliance.

1 Java and related names are trademarks of Sun Microsystems, Inc.
2 Winter, Don C., “Modular, Reusable Flight Software For Production Aircraft”, AIAA/IEEE Digital
Avionics Systems Conference Proceedings, October, 1996, p. 401-406.
3 Sharp, David C., “Reducing Avionics Software Cost Through Component Based Product Line
Development”, Software Technology Conference, April 1998.
4 Doerr, Bryan S., and Sharp, David C., “Freeing Product Line Architectures from Execution
Dependencies”, Software Technology Conference, May, 1999.
5 Sharp, David C., “Avionics Product Line Software Architecture Flow Policies”, AIAA/IEEE Digital
Avionics Systems Conference, October 1999.

2

3.1 REAL-TIME JAVA REQUIREMENTS ANALYSIS

3.1.1 The Contractor shall assist in the definition of requirements and validation of
selected use cases for RT Java as it relates to embedded mission processing systems. This
effort shall investigate several aspects of RT Java’s runtime system and evaluate its
suitability for real-time embedded information technology systems in areas of interest to
the Government.

Requirements definitions for RT Java based on Boeing’s experience with embedded
mission processing systems are documented in the “Test Descriptions and Results for the
Real-Time Java for Embedded Systems Program” document, Version 3.0, dated 17 April
2003. The requirements related to the RTSJ are stated in section 3 “RTJES-Related
Requirements.” The requirements related to RT Java application level requirements are
stated in Section 5 “Application Requirements”. Highlights of these requirements are
provided in Section 2.4 “RTJES-Related Requirements” and section 2.5 “Application
Requirements” of this final report.

3.1.2 The Contractor shall examine strategies for using the technologies and ensuring
appropriate testing is available.

RT Java provides for aspect programming, code mobility, and portability. The strategies
for using these technologies have been tested and demonstrated on the Insertion of
Embedded Infosphere Support Technologies (IEIST) Demonstration on February 24,
2004 in St. Louis, MO.

3.1.3 The Contractor shall participate bi-monthly in selected working groups associated
with the specification of RT Java

Boeing actively participated in the Distributed Real-Time Expert Group Java
Specification Request (JSR)-50. Boeing attended the Kickoff meeting at MITRE on 18-
19 December 2000; Second meeting in Bedford, MA, on 1-2 February 2001; and Boeing
hosted the third meeting in St. Louis, MO, on 19-20 March 2001. Boeing also worked
extensively with TimeSys Corporation during initial checkout of the RTSJ Reference
Implementation.

3.1.4 The Contractor shall document the results of this effort to include observations on
military use of emerging standards, activities performed in the context of these meetings
to convey military needs, and recommendations for further investigations.

As part of the of the Distributed Real-Time Specification for Java Expert Group meeting
in St. Louis on 19-20 March, presentations were provided by system developers from the
F/A-18 and F-15 programs, and from a Huntsville, AL Phantom Works representative.
Two technical papers, included in Appendix A and Appendix B of this final report, were
published on the merits of the RTSJ standard for large-scale embedded systems mainly
those found in military avionics mission computing systems.

3

3.2 DEVELOPMENT OF REAL-TIME JAVA-RELATED TECHNOLOGIES FOR
MILITARY APPLICATION

3.2.1 ARCHITECTURE

3.2.1.1 The Contractor shall propose experiments, develop prototypes, and analyze test
results associated with determining the architectural suitability of RT Java for embedded
mission systems.

Experiments and prototypes are documented in “Test Descriptions and Results for the
Real-Time Java for Embedded Systems Program” document, Version 3.0, dated 17 April
2003. The RTSJ-related testing is documented Section 4 “RTSJ Related Testing” and
the application level testing is documented in Section 6 “Real-Time Embedded
Application Testing.” The results of these experiments are measured against the
established requirements for embedded mission systems.

3.2.1.2 The Contractor shall evaluate and analyze the use of RT Java to provide adaptive
software capabilities to real-time systems.

One part of adaptive software capabilities is the ability to efficiently support several
different software features. As part of the benchmark experiments and lab demonstration,
technologies associated with the Washington University (WU) Framework for Aspect
Composition for an EvenT Channel (FACET) RT Event Channel and University of
California, Irving (UCI) Zen RT CORBA were tested. These products rely on Aspect
Oriented Programming (AOP) technology designed to provide maximum flexibility of
programming with a minimal size memory footprint. At the time of our testing, the
FACET RT Event Channel did not provide sufficient throughput performance for it to be
included in our test suite. The Zen RT CORBA product was used in the lab
demonstration and benchmark results are in included in Section 5 “Real-Time Java
Laboratory Demonstration” of this final report.

A second part of adaptive software capabilities is the ability to support different operating
systems. At the time of this project, only one commercially available RTSJ
implementation (TimeSys JTime) was available that supported only one real-time
operating system (TimeSys RT Linux).

3.2.1.3 The Contractor shall evaluate the performance gains of selected algorithms,
implemented in RT Java, as compared to current programming languages.

During application tests documented in Section 6 “Real-Time Embedded Application
Testing” of the “Test Descriptions and Results for the Real-Time Java for Embedded
Systems Program” document, side-by-side comparisons are performed with RT Java,
standard Java, and C++. These results are also summarized in Section 4 “Application
Tests and Results” of this final report.

4

3.2.1.4 The Contractor shall examine, to the extent feasible, verification and validation
methodologies and tools, determining applicability, value, level of effort to use, as well as
determining areas that are not addressed and develop a plan for ensuring that
appropriate testing is available.

The development productivity is documented in Section 6.2 “Developmental Testing” of
the “Test Descriptions and Results for the Real-Time Java for Embedded Systems
Program” document. A side-by-side comparison was performed with Real-Time Java
and C++.

3.2.2 DISTRIBUTED PROCESSING

3.2.2.1 The Contractor shall prototype and analyze, to the extent feasible, distributed
processing scenarios using a RT Java implementation.

The RTJES program teamed with the IEIST program to perform a laboratory
demonstration on February 24, 2004. This demonstration successfully executed a
distributed processing scenario using RT Java.

3.2.2.2 The Contractor shall perform, to the extent feasible, whitebox and blackbox
verification using a commercial RT Java implementation, of the network interface,
concurrency, priority management, and memory management features, as they relate to
distributed processing, present within the commercial implementation.

In addition to the IEIST demonstration, distributed benchmarks were performed on RT
Java portion of the scenario and have been documented in Section 5.3 “Distributed
Benchmarks” of this final report.

3.2.2.3 The Contractor shall implement distributed processing scenarios using Real-Time
CORBA (RT CORBA).

UCI Zen RT CORBA was integrated with RT Java in preparation for the IEIST
demonstration.

3.3 DEMONSTRATIONS

3.3.1 DEMONSTRATION OF DISTRIBUTED RT JAVA USING CORBA

3.3.1.1 The Contractor shall demonstrate distributed RT Java within an embedded
mission system application using RT CORBA compliant object request brokers as per
section 3.2.2, to the extent feasible with available products.

The IEIST demonstrated using UCI Zen RT CORBA technology was demonstrated and
witnessed by AFRL representatives on February 24, 2004 at the Boeing facilities in St.
Louis, MO.

5

3.3.1.2 The Contractor shall document the results of the demonstration, including a
description of the technology, its benefits and restrictions, and its use in the
demonstration. The Contractor shall collect metrics, as defined by the contractor, to
show the benefit of the demonstrated technology. Additionally, the contractor shall
describe its method of deployment such that system analysts and developers can employ
the technology in ongoing efforts.

The results of the IEIST Demonstration are documented in Section 5 “Real-Time Java
Laboratory Demonstration” of this final report. Metrics on throughput and deterministic
performance were collected and provided in this report. The method of deployment is
documented in this report so that system analysts and developers can employ this
technology in ongoing efforts such as future IEIST Demonstrations.

3.4 TECHNICAL INTERCHANGE MEETING

The Contractor shall plan for and document the results of technical interchange
meetings, which shall be held at Wright-Patterson AFB and the contractor’s facility. The
kickoff meeting shall be held no later than one (1) month after the delivery order award
at Wright-Patterson AFB. A subsequent meeting shall be held midway through the
technical effort at the contractor’s facility. The contractor shall conduct a final technical
interchange meeting.

The following Technical Interchange Meetings (TIMs) were held at Wright-Patterson
AFB and Boeing, St. Louis.

1) Kickoff meeting was held in Wright-Patterson AFB on November 14, 2000.
2) TIM 1 was held in Boeing, St. Louis on March 23, 2001.
3) TIM 2 was held in Wright-Patterson AFB on October 29, 2001.
4) TIM 3 was held in Boeing, St. Louis on May 10, 2002.
5) TIM 4 was held in Boeing, St. Louis on December 11, 2002.
6) TIM 5 was combined with an IEIST Review and held in Wright-Patterson AFB

on September 16, 2003.
7) Final review was also combined with an IEIST Review and held in St. Louis on

February 24, 2004.

1.4 Document Overview

The remainder of this report begins by providing in section 2 “Technical Approach” the
technical approach associated with the RTJES program emphasizing the experimentation
systems and the derived requirements from our experience with avionics military
embedded systems. In Section 3 “RTSJ Testing” and Section 4 “Application Testing,”
these requirements are used to formulate the RTSJ “low-level” testing and application-
level testing for RT Java. In Section 5 “Real-Time Java Laboratory Demonstration,” the
previous tests form the basis for the final lab demonstration with the inclusion of
distributed benchmarking. Final summaries of the test and laboratory results are
provided in Section 6 “Summary.” Reference information associated with this final
report is listed in Section 7 “Reference Documents.” Included in the appendix are the
technical journals that were accepted for publication by IEEE as a result of this program.

6

2 Technical Approach
Using our Bold Stroke experience with avionics large-scale embedded system, we
selected a set of infrastructure requirements applicable to our domain. From these
requirements, we determined which requirements were supported by Real-Time Java.
For the applicable associated requirements, a set of benchmarks and a lab demonstration
was developed to determine the suitability to Real-Time Java. The applicability of the
requirements and suitability of the test results were documented. This process is
illustrated in Figure 1.

Document applicability
of RTJ to embedded

systems

Document applicability
of RTJ to embedded

systems

Document suitability of
RTJ to embedded

systems

Document suitability of
RTJ to embedded

systems

Benchmark RTJ-Related
Implementations

and
Lab Demonstration

Determine Which
Requirements RTJ Supports

Select Challenging Bold
Stroke Infrastructure

Requirements

for
associated

requirements

Leverage Bold Stroke
Experience For Java - Based

Experiments

Leverage Bold Stroke
Experience For Java - Based

Experiments

Figure 1. Technical Approach

Under the Java Community Process (JCP), each specification effort must provide three
main items: (1) the specification itself, (2) a reference implementation of the
specification, and (3) a test suite (referred to as the “technology compatibility kit
(TCK)”). Since the TCK is required to test the functional semantics of compliant JVMs,
the testing planned as part of RTJES focuses on assessment of nonfunctional properties
of JVMs. The following key nonfunctional properties form the core experimentation
areas:

1) Performance: investigating the throughput and latency associated with JVM
capabilities.

7

2) Determinism: investigating the predictability associated with JVM capabilities,
including jitter in various periodic or timed activities.

3) Applicability to mission critical systems: other areas of concern for mission-
critical systems, including stability, functionality, and associated patterns of
usage.

There are two categories of tests envisioned: (1) RTSJ-related tests, and (2) application-
related tests. RTSJ-related tests investigate the qualities of specific RTSJ capabilities.
Application-related tests investigate the qualities of integrated systems where RT JVMs
are leveraged to perform representative mission critical software use cases. Application-
related tests focus on assessing integrated behavior of multiple RTSJ capabilities as
would be found in a final system. All of these requirements are documented in Test
Descriptions and Results for the Real-Time Java for Embedded System Program report.
This section will highlight those requirements that are most applicable to our current
avionics environment.

2.1 Experimentation System

Early on in this program, the promises of at least a few RTSJ compatible JVMs were on
the horizon. Figure 2 shows a list of potential RTSJ JVM alternatives that were
considered for evaluation. Unfortunately, as time progressed only one commercially
available RTSJ implementation was available on the market. The product is JTime from
TimeSys.

Product

RTSJ
Compliance RTOS HW Platform

BoldStroke Infrastructure
Status on Platform

Comment on Java
Interoperability with Non-

Java Tasks Comments

Timesys RT Yes, RTLinux x86

Infrastructure ported to Redhat
for SEC program. Would
downloadable patch for conversion
RTLinux. However, ACE/TAO
not appear to have been ported
RTLinux

Available Jan. 2001.
look as good as
thought because

C / Ohas not been ported
tRTLinux. Also the
API is different than
Linux and the two can't
use of each other's
resources.

OTI (IBM) Real-
Java

Yes, although
version does not
implement entire

QNX Neutrino
2.0 Patch Level
C (Can't be
newer) x86

Need to port to QNX
ACE/TAO has been ported to
QNeutrino in

Downloadable
Shbeta version
available. It only works
an older version of
QNeutrino.

WindRiver
Jworks Not VxWorks PPC, etc.

Would be best
fcomparison.

Other VxWorks tasks can run
can be prioritized vs. the Java

WindRiver doesn't claim
the JVM itself is real-
Willing to work/share

NewMonics
C

It looks like it is
compliant with J
Consortium VxWorks PPC, etc. Best Infrastructure

They support JNI and have their
PNI, methods for Java threads
communicated with non-Java
It appears as though all Java
run under one VxWorks task
therefore, to the VxWorks

kthey all appear to have the
priority.

"Truly real-time
Website says max 150
secs to preempt GC.
Embedded Toolkit is a
library that is patterned
fthe specification

b ideveloped by the
Consortium. PERC runs
a task under VxWorks
RT Java tasks run within

Esmertek Jbed
RTOS Said yes but they

actually on J-
C t

Combined
proprietary
RTOS
JVM

PPC, etc. No
Can call C++ functions but
coexist with another
RTOS

EmWorks

Said yes eventually
not presently
(sooner if

)
RTX PPC, etc.

If they can port to VxWorks or
Q(which we plan to port

)

RT Java threads are mapped
underlying RTOS threads so,
java threads can be prioritized vs.
Java threads and vice-

Willing to make
compliant and port
VxWorks or QNX if

Table 1. Overview of Candidate JVMs

The next section describes the final configuration using JTime for both the hardware and
software platform used for the testing and lab demonstration.

8

2.2 Hardware System

The same hardware, a Dell GX 150, was used for all benchmark development and
execution. This computer has a single 1.2-GHz Pentium 4 processor. It has a 12-GB hard
drive, 256 MB of RAM, and 256 KB of cache memory.

2.3 Software System

As of this writing, the only known planned commercial implementation of the RTSJ is
JTime from TimeSys, for which we received a pre-release version. Prior to availability of
this product, we developed tests and measured results on the openly available Reference
Implementation (RI), also from TimeSys. The RI was designed to investigate and
demonstrate the semantics of the RTSJ, not for acceptable run-time performance. Our
prior RI benchmarking confirmed this.

The test platform was configured with Red Hat’s Linux version 7.2, with real-time
support provided by TimeSys Linux/NET for X86 UNI platform operating system
extensions, version 3.1.214c, and TimeSys RT JVM version 3.5.3. Figure 3 lists the
major software products used for the experiments, as well as the compiler options used
that are associated with performance.

 C++ RT
Java Java

Build
Tools

GNU Make version
3.79.1

Apache Ant
Version 1.5.3

Compilers

GNU C++ version
3.1.1(-O3 -g

-fno
-exceptions
-fcheck-new)

Jikes version 1.14
(no compiler
options used)

TimeSys
RT JVM
version
3.5.3

Run-Time
Platform

TimeSys Linux/NET for X86
UNI version 3.1.214c

Java
J2SE
with

HotSpot
version
1.4.1-2

Table 2. Software Packages

All Java tests were run with bytecodes generated by Jikes being interpreted in the JVM.
For associated tests, the RT JVM was executed with a memory allocation pool of 50 MB
(-Xms50M). The immortal memory size was set to 10 MB
(IMMORTAL_SIZE=10000000).

To minimize nondeterministic system effects, all unnecessary operating services were
stopped, virtual memory was disabled, and the system was rebooted in between tests.

The testing methodology for both the JTime from TimeSys and J9 from IBM is illustrated
in Figure 4. The test application ran from a console window and output was recorded in

9

a test file. The J9 JVM did not improve significantly from its original implementation
and was later dropped as a potential test platform.

J9 on QNX RTP

OR

JTime on Linux/RT

Figure 2. Test Methodology for JVMs

2.4 RTSJ-Related Requirements

The RTSJ capabilities supported by the RT JVMs exhibit a wide range of requirements.
The requirements presented below come from requirements used on various Boldstroke
and Boeing military projects. This section covers only the requirements for the most
important RTSJ-related tests. The complete set of the RTSJ-related requirements can be
found in the Test Descriptions and Results for the Real-Time Java for Embedded System
Program report, Section 3 “RTJES-Related Requirements.”

2.4.1 Thread

The thread requirements are concerned with consistency in the start and end time
determinism of various thread and latencies in switching between threads.

Context Switch Latency - Context switch latency shall be less than 10 microseconds.

Thread throughput - Throughput in different threads shall not vary by more than 1 per
cent for No Heap Real-Time Threads (NHRT) and Real-Time Threads (RT).

2.4.2 Scheduling

The scheduling requirements are concerned with the processor utilization times and
latencies in executing the overrun handler.

Periodic Start of Frame Determinism – Jitter shall be within 1 per cent of the period.
With a representative avionics-processing rate of 20 Hz, the maximum allowable jitter is
0.5 milliseconds.

10

Periodic End of Frame Determinism – Completion time differences shall be under 0.5
milliseconds. This represents 1 per cent of a 20-Hz frame.

Aperiodic End of Frame Determinism - Completion time differences shall be under 0.5
milliseconds. This represents 1 per cent of a 20-Hz frame.

2.4.3 Memory Management

The memory management requirements are concerned with the processor utilization
times for entering and exiting Memory Areas, allocating objects, finalization
performance, and garbage collection performance.

Instruction execution time in different Memory Areas - The throughput values shall be
within 1 per cent across all memory areas.

Object allocation time in different Memory Areas - Average allocation time less than 2.0
microseconds/byte shall be acceptable.

Memory Area entry/exit times - Average memory area entry time shall be 100
microseconds or less. Average memory area exit time shall be 100 microseconds or less.

Jitter execution time performance - Jitter shall be less than 0.5 milliseconds for each
memory area. This represents 1 per cent of a 20-Hz frame.

2.4.4 Synchronization

The synchronization requirements are concerned with measuring various software system
latencies.

Priority inheritance latency - Priority latency shall be under 50 microseconds for
boosting and unboosting priorities combined.

Synchronization latency - Synchronization latency shall be under 10 microseconds of
overhead (difference between synchronized and non-synchronized).

Synchronization block latency - Synchronization latency shall be under 10 microseconds
of overhead (difference between synchronized and non-synchronized block execution
times).

2.5 Application Requirements

For this evaluation, we have captured key operational metrics based on our experience
with the required run-time performance of a range of avionics systems. Since the RT
JVM does not include specific support for distribution, these requirements are captured at
the level of the complete software system and therefore apply primarily in the context of
benchmark tests that are representative of full-scale single processor avionic mission
computing systems.

11

2.5.1 Performance

Performance in this context refers to the capability of a software system to meet timing
and sizing constraints imposed by the application functionality and the hardware and
software operating environment.

Steady State Time - The software system shall support execution of multiple periodic
rates of application components up to 20 Hz. The execution time required for
infrastructure services (e.g. middleware, JVM, operating system) shall not exceed 25 per
cent of the total processing time (when measured in a full-scale system that is fully
exercising those services).

Memory Usage - The software system shall support execution within a memory limit of
approximately 100 MB, including a full application load.

Duration of Operation - The software system shall support stable execution up to
approximately 10 hours.

2.5.2 Determinism

Determinism in this context refers to the capability of a software system to have
predictable resource utilization, regardless of speed.

Steady State Time - The variability in the start of periodic processing frames shall not
exceed 1 per cent of the associated period. The variability in the time required to process
the application within each execution rate shall not exceed 5 per cent of the associated
period.

Memory Usage - The variability in the memory used by the software system during
multiple identical runs shall not exceed 5 per cent.

Scalability - The software system will minimize the performance cost for adding software
functionality to O (n log n).

12

3 RTSJ Testing
These tests focus on assessing the performance of specific RTSJ capabilities. These tests
have been added to the RTJPerf open source RT JVM benchmarking suite established by
Angelo Corsaro at the University of California, Irvine (UCI) [6] and Washington
University in St. Louis. Taken together, tests were created to assess determinism,
latency, and throughput associated with threads, scheduling, memory management,
synchronization, time, timers, asynchrony, exceptions, and class loader and dynamic
linking. Only the tests deemed of most importance are included here. A complete set of
the tests can be found in the Test Descriptions and Results for the Real-Time Java for
Embedded System Program report.

For each test, a description of the test is included, along with success criteria, and
experimental results and analysis. The success criteria are based on requirements and
experiences with avionic mission computing systems. While these criteria are
intentionally domain specific, they do capture expectations for an important category of
embedded systems. In all cases, the raw measured values are provided for comparison
against criteria in other domains.

3.1 Throughput

The RTSJ introduces two new types of threads as shown in Figure 5: RT threads and No
Heap RT (NHRT) threads. RT threads support, at a minimum, basic real-time preemptive
scheduling. No Heap RT threads add the guarantee that execution will be independent of
garbage collection but with the additional restriction that heap-based memory not be
used. This section outlines tests assessing the throughput of these different thread types in
varying execution environments.

ja v a . la n g . Th r e a d

ja v a x . r e a lt im e . R e a lt im e Th r e a d

ja v a x . r e a lt im e . N o H e a p R e a lt im e Th r e a d

Figure 3. Thread Inheritance in RT Java

[6] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features and Performance for Real-time
Embedded Systems”, Proceedings of the 8th IEEE Real-time Technology and Applications
Symposium, September 2002.

13

3.1.1 Thread Throughput

Description: Record the execution time of a computationally intensive algorithm,
representative of avionics mission computing processing, when run in different thread
types: No Heap Real-Time Thread (NHRT), Real-Time Thread (RT), and
java.lang.Thread. All thread types will be processing in a 20-Hz frame. In the thread’s
run() method, log timestamps before and after the algorithm executes. This
computationally intensive algorithm is a flight controls algorithm that is CPU intensive
and reads data from two different input files. The flight controls algorithm performs all
of its memory allocation and reference storage upon initiation. The No Heap Real-Time
Threads were executed using Immortal memory that has no garbage collection while the
Real-Time Threads were executed from heap memory.

Success Criteria: Throughput in different threads shall not vary by more than 1 per cent.
The test is illustrated in Figure 6.

NHRT NHRT

flight controls algorithm
execution time

RT

Normal Normal

300 Samples
10 28 Priority

Normal RT NHRT
Test

Conditions
Thread Type

300 Samples
10 28 Priority

Normal RT NHRT
Test

Conditions
Thread Type

• Description
– Run samples of

computationally
flight controls

– Measure execution
– Compute percent

for average, min, and
between different types
threads.

time

Figure 4. Execution with Different Thread Types

Results: The throughput for NHRT, RT, and normal java threads on the selected
algorithm was comparable. The largest percentage time difference between the three
thread types was 0.643 per cent for the NHRT and RT threads. See Figure 7 for more
throughput comparisons between NHRT, RT, and normal threads.

14

NHRT (ms) RT (ms) Normal (ms) % Difference

Ave 3.5201 3.5087 3.5174 0.324%

Min 3.5109 3.4977 3.5076 0.376%
Max 3.5372 3.5601 3.5439 0.643%

3.46
3.48
3.50
3.52
3.54
3.56
3.58

NHRT RT Normal
Thread Ex

ec
ut

io
n

Ti
m

e
(m

se
c)

Figure 5. Execution with Different Thread Types Results

3.1.2 Thread Throughput With Contending Background Threads

Description: Record the execution time of the same mission computing algorithm, when
run with different scheduling parameters and competing threads. The algorithm is CPU
intensive and executes in a NoHeapRealtimeThread with a priority of 260. Measure how
the same functionality scheduled with varying numbers of lower priority threads behaves.
The contending threads execute in RealtimeThreads with lower priorities. The lower
priority threads log timestamps and invoke yield() methods. All threads are periodic,
executing at a 20-Hz frame rate.

Success Criteria: Difference between the tests with no background threads and the tests
with 15 background threads shall be less than 5 per cent. The test is illustrated in Figure
8.

15

 • Description
– Run periodic samples of the

computationally intensive flight
controls algorithm with/without
contending background thread.

– Measure execution times
– Compute percent difference

between max and min execution
time.

NHRT

time

15 RTs

250 N/A Priority of RTs

260 NHRT
100Periodicity

20 Duration

15 0

Test

Number of RTs

Test Case pr
io

rit
y

active
awaiting activation
idle flight controls

execution time

No
Contention

Contention

Figure 6. Execution with Contending Background Threads

Result: The first case schedules only the thread being analyzed, while the second case
schedules the thread to be analyzed along with 15 background threads. The difference
between the maximum, minimum, and average data points were all below 1 per cent.
This meets our success criteria. See Figure 9 for detailed metrics.

3.48

3.50

3.52

3.54

3.56

3.58

No Contention Contention

Test Case

Ex
ec

ut
io

n
Ti

m
e

(m
se

c)

No Contention (ms) Contention (ms) % Difference

Avg 3.5253 3.5290 0.1039%
Max 3.5495 3.5669 0.7673%
Min 3.5218 3.5244 0.0756%

Jitter 0.0177 0.0424

Figure 7. Execution with Contending Background Threads Results

16

3.2 Determinism

The RTSJ provides direct support for initiating functionality that needs to be run at
periodic intervals either via thread scheduling or via events driven by timers. This section
outlines tests investigating timing jitter associated with initiating and completing periodic
activities.

3.2.1 Periodic Start of Frame Determinism

Description: Using the PeriodicParameters class, establish a periodic thread.
Immediately after the waitForNextPeriod() call, log a timestamp and calculate the
time between invocations. Two tests were conducted. The first test was executed with
only a single 20-Hz NoHeapRealtimeThread being analyzed, while the second test was
executed with the 20-Hz NoHeapRealtimeThread thread being analyzed while another
fifteen lower priority RealtimeThread threads were executing at a 20-Hz frame rate. The
lower priority threads log timestamps and invoke yield() methods. All threads are
periodic, executing at a 20-Hz frame rate.

Success Criteria: Jitter shall be within 1 per cent of the period. With a representative
avionics processing rate of 20 Hz, the maximum allowable jitter is 0.5 milliseconds. The
test is illustrated in Figure 10.

NHRT NHRT

time

15 RTs

• Description
– Run periodic samples of

algorithm then yield
contending background

– Measure delta start of frame
– Compute percent difference

max and min

250N/A Priority of RTs

260 NHRT Priority
50 millisecondsPeriodicity

30 secondsDuration

150 Number of RTs

ContentionNo
Contention

Test Conditions
Test Case

250N/A Priority of RTs

260 NHRT Priority
50 millisecondsPeriodicity

30 secondsDuration

150 Number of RTs

ContentionNo
Contention

Test Conditions
Test Case pr

io
rit

y

active
awaiting activation
idle

delta start of
frame

Figure 8. Periodic Start of Frame Determinism

Results: The maximum jitter in both tests easily surpassed the success criteria of 0.5
milliseconds. See Figure 11 for details.

17

49.94
49.96
49.98
50.00
50.02
50.04

No Contention Contention
Test CaseEx

ec
ut

io
n

Ti
m

e
(m

se
c)

No Contention (ms) Contention (ms)

Avg 50.0 50.0
Max 50.0048 50.0241
Min 49.9954 49.9794

Difference 0.0094 0.0447

Figure 9. Periodic Start of Frame Determinism Results

3.2.2 Periodic End of Frame Determinism

Description: Using the PeriodicParameters class, set up a periodic
NoHeapRealtimeThread thread. Immediately after the waitForNextPeriod() call,
execute an algorithm of significant duration but not longer than the period. After the
algorithm completes, log a timestamp and calculate the difference between successive
timestamps. Repeat with and without competing lower priority RealtimeThread threads
as for the previous test. The lower priority threads log timestamps and invoke yield()
methods. All threads are periodic, executing at a 20-Hz frame rate.

Success Criteria: Completion time differences shall be under 0.5 milliseconds. This
represents 1 per cent of a 20-Hz frame.

Results: The maximum jitter for 0 and 15 competing threads was 0.0282 milliseconds and
0.1441 milliseconds, respectively, which easily met the success criteria. See Figure 12
for specific measurement results.

18

 0 Other Threads 15 Other Threads

Avg 50.0000 50.0000

Max 50.0153 50.0688

Min 49.9870 49.9247

Difference 0.0282 0.1441

Table 3. Frame Execution Times Measured at Frame Completion (milliseconds)

3.2.3 Periodic Event Determinism

Description: Measure the jitter in PeriodicTimer driven AsyncEvents. Immediately
inside the handleAsyncEvent method, log a timestamp and calculate the time between
invocations. The first test was executed with only a single 20-Hz NoHeapRealtimeThread
being analyzed, while the second test was executed with the 20-Hz
NoHeapRealtimeThread thread being analyzed while another fifteen lower priority
RealtimeThread threads were executing at a 20-Hz processing rate also.

Success Criteria: Periodic event timing differences shall be under 0.5 milliseconds, 1 per
cent of a 20-Hz (50 millisecond) frame. This test is illustrated in Figure 13.

 • Description
– Run asynchronous events driven by a

periodic timer.
– Measure the delta receipt of the

asynchronous event fires.
– Compute percent difference between

max and min periods.

250N/A Priority of RTs

260NHRT Priority
50 millisecondsPeriodicity

30 secondsDuration

150 Number of RTs

Bound /
Unbound

Contention

Bound /
Unbound

No Contention

Test Conditions
Test Case

250N/A Priority of RTs

260NHRT Priority
50 millisecondsPeriodicity

30 secondsDuration

150 Number of RTs

Bound /
Unbound

Contention

Bound /
Unbound

No Contention

Test Conditions
Test Case

periodic
timer

time

bound
handler

active
awaiting activation
idle

delta receipt of
event fires

unbound
handler

Figure 10. Periodic Event Determinism

Results: The first case was run with the AsyncEventHandler analyzing a single thread
while the second case was executed with the AsyncEventHandler analyzing a single

19

thread with fifteen background threads. The third case was run with the
BoundAsyncEventHandler analyzing one thread while the fourth case was executed with
the BoundAsyncEventHandler analyzing a single thread with fifteen background threads.
In all cases, the jitter met the success criteria. See Figure14 for more completion time
comparisons with and without competing threads.

 Bound, No

49.98
49.99

50
50.01

1 77 153 229 305 381 457 533

50 Hz Periodic Samples

P
er

io
d

(m
se

c)

Bound, Contention (15 Threads)

49.8

50

50.2

1 74 147 220 293 366 439 512 585

50 Hz Periodic Samples

P
er

io
d

(m
se

c)

Unbound, No Contention

49.8
49.9

50
50.1

1 73 145 217 289 361 433 505 577

50 Hz Periodic Samples

P
er

io
d

(m
se

c)

Unbound, Contention (15 Threads)

49.8
49.9

50
50.1
50.2

1 71 141 211 281 351 421 491 561

50 Hz Periodic Samples

P
er

io
d

(m
se

c)

Figure 11. Periodic Event Determinism Results

3.3 Latency

This section details tests assessing delays associated with context switching,
synchronization, and event delivery. The RTSJ supports event-based programming for
two types of event handlers: bound and unbound. A bound event handler creates one
thread that is permanently bound to the handler and remains active for all event fires. An
unbound event handler creates a new thread with each event fire.

3.3.1 Context Switch Latency

Description: Initiate a high priority thread and a lower priority thread. Both threads will
be executing at a 20-Hz frame rate. In the higher priority thread, log a timestamp before
the yield() in the run method. In the lower priority thread, log a timestamp after the
yield() in the run method. Then compute the latency between the higher priority
thread’s timestamp and the lower priority thread’s timestamp.

Success Criteria: Context switch latency shall be less than 10 microseconds. This test is
illustrated in Figure 15.

20

Results: The results show a median of approximately 2.1 microseconds. Some of the
samples spike to 2.3-2.8 microseconds, probably indicating that some processing in
addition to the context switch is being run following the yield() call. Even with this,
however, the maximum time to switch between threads was roughly 2.8 microseconds,
which is better than the 10 microsecond success criteria.

1.5

1.8

2.1

2.4

2.7

3

1 1000 1999 2998 3997
Samples

Ti
m

e
(m

ic
ro

se
co

nd
s)

Figure 12. Context Switch Latency

3.3.2 Priority Inheritance Latency

Description: This test measures a relatively simple three thread case of priority
inheritance. The low priority thread (LPT) starts and enters a synchronized method.
While in that method, the medium priority thread (MPT) starts and preempts the LPT.
While the MPT runs, a high priority thread (HPT) preempts the MPT and attempts to
enter the same synchronized method the LPT presently has a lock on. According to
priority inheritance, the LPT should get boosted up to the priority of the HPT so it can
finish with the synchronized method, thus allowing the HPT to run as soon as possible.
Log timestamps before and after the calls to the synchronized method. Also log
timestamps at the first and last instructions inside the synchronized method. These
timestamps are used to measure the boost, unboost, and total priority inheritance latency
times. Each thread will execute at a 20-Hz frame rate.

Success Criteria: Priority latency shall be under 50 microseconds for boosting and
unboosting priorities combined.

21

Results: For both cases the maximum latency was roughly 9.0 microseconds, thus the test
passed the 50 microsecond success criteria. See Figure 16 for more priority inheritance
boost, unboost, and total latencies.

 Boost Unboost

Latency

(Boost +

Unboost)

Avg 5.1372 2.7735 7.9107

Max 6.2626 3.1574 8.9635

Min 4.4778 2.6517 7.1566

Delta 1.7849 0.5057 1.8070

Table 4. Priority Inheritance Latency (microseconds)

3.3.3 Synchronization Latency

Description: Record the time elapsed to enter a synchronized method versus a non-
synchronized method. Log timestamps prior to the method call and once inside the
synchronized and non-synchronized methods. Each thread will execute at a 20-Hz frame
rate.

Success Criteria: Synchronization latency shall be under 5 microseconds of overhead
(difference between synchronized and non-synchronized).

Results: The test was executed for the synchronized and normal method latency cases.
For each case the latency differences were less than 2 microseconds, thus this test passes
the 5 microsecond threshold. See Figure 17 for more synchronized and non-
synchronized latencies.

Non-

Synchronized Synchronized

Difference

Avg 1.3351 3.2385 1.9034

Max 1.7257 3.6962 1.9705

Min 1.3153 3.1975 1.8822

Table 5. Synchronization Latency (microseconds)

22

3.3.4 Event Latency

Description: Measure the latency from the firing of an AsyncEvent to the time it is
handled. Log timestamps prior to the fire and once the event is handled. Each thread
will execute at a 20-Hz frame rate.

Success Criteria: Event latency shall be under 100 microseconds. The test is illustrated
in Figure 18.

 • Description
– Run asynchronous events driven by a

periodic timer.
– Measure the difference between the

event fire and receipt of the event fire.

250N/A Priority of RTs

260NHRT Priority
50 millisecondsPeriodicity

30 secondsDuration

150 Number of RTs

Bound /
Unbound

Contention

Bound /
Unbound

No Contention

Test Conditions
Test Case

250N/A Priority of RTs

260NHRT Priority
50 millisecondsPeriodicity

30 secondsDuration

150 Number of RTs

Bound /
Unbound

Contention

Bound /
Unbound

No Contention

Test Conditions
Test Case periodic

timer

time

bound
handler

active
awaiting activation
idle

unbound
handler

event latency

Figure 13. Event Latency

Results: BoundAsyncEventHandler was used for the first case and AsyncEventHandler
was used for the second. Both the BoundAsyncEventHandler and AsyncEventHandler
were acceptable for our needs since all cases met the success criteria. Figure 19
compares the BoundAsyncEventHandler and AsyncEventHandler latencies. Analysis of
the data indicates that a relatively few measurement spikes were observed.

23

Bound, No
Contention

Bound,
Contention

(15 Threads)
Unbound, No
Contention

Unbound,
Contention

(15
Threads)

Avg 14.746 14.504 14.664 14.632
Max 25.434 27.137 27.420 26.032
Min 14.434 14.200 14.415 14.406

Jitter 11.000 12.937 13.005 11.626

0.0
10.0
20.0
30.0

Bound, No
Contention

Bound
Contention

(15 Threads)

Unbound,No
Contention

Unbound,
Contention

(15 Threads)

Test Case
La

te
nc

y
(u

se
c)

Figure 14. Event Latency Results (microseconds)

3.4 Memory Management

The RTSJ defines a range of different memory types to address real-time aspects of
memory management and garbage collection. This section details tests with allocation
throughput, entry, and exit performance for the heap, immortal, linear time (LT) memory,
and variable time (VT) memory areas. The Jet Propulsion Laboratory created the
allocation time and throughput time tests. In Figure 20, the memory area classes that are
colored represent the classes with test results included herein.

 MemoryArea

ImmortalMemoryScopedMemory ImmortalPhysical
Memory

HeapMemory

LT Memory VT Memory LT Physical Memory VT Physical Memory

Figure 15. Memory Area Class Inheritance

3.4.1 Allocation Time vs. Memory Area

Description: Measure the time required to allocate the same sized objects in different
memory areas. Place time stamps before and after the memory allocation code. Then
calculate the difference between before and after times for memory allocation. Perform

24

this test for various object sizes from 4 to 16,384 bytes. Each thread executes at a 20-Hz
periodic frame rate.

Success Criteria: Average allocation time less than 2 microseconds/byte shall be
acceptable. This test is illustrated in Figure 21.

 • Description
– Measure the time required to allocated the same sized objects

when running different memory area types.
– Perform this test with various sized objects.
– Average the samples per object size and memory area types and

analyze results.

RT RT

time

4, 8, 64, 512, 4096, and
16,384

Object Sizes
(bytes)

Heap, Immortal, LT, VT Memory Areas

10 Samples

Real-time Thread Type
Test Conditions

4, 8, 64, 512, 4096, and
16,384

Object Sizes
(bytes)

Memory Areas

10 Samples

Real-time Thread Type
Test Conditions

memory
allocation

Figure 16. Allocation Time vs. Memory Area

Results: The average time to create 64 byte objects took less than 16 microseconds for
all memory areas, meeting the success criteria. The times for immortal, linear time, and
variable time memory areas were nearly identical for this test. See Figure 22 for per-byte
allocation times in the different memory areas.

25

0
0.25

0.5
0.75

1
1.25

1 2 3 4 5 6
Samples (1=4 bytes, 2=8 bytes, 3=64 bytes, 4=512 bytes,

5=4096 bytes, 6=16384 bytes)

Ti
m

e
(m

ic
ro

se
co

nd
s)

Immortal
LT Mem
VT Mem

 Heap

Figure 17. Maximum Memory Allocation Time per Byte for Multiple Byte Objects

3.4.2 Execution Time vs. Memory Area

Description: Measure the time needed to execute a division, logarithmic, and no
operation in each memory area. The division operation is a ‘divide by 2’ while the log
operation takes the ‘log of 5’. Place time stamps before and after the call to each
operation. Each thread will execute at a 20-Hz frame rate. The test is illustrated in
Figure 23.

RT RT

time

 Description
– Measure the time needed to execute

various mathematical operations.
– Compute the maximum and minimum

per operation for all memory areas.
execution

time

float division (divide by 2),
logarithmic (log 5), and

no operation.

Algorithmic
Functions

Heap, Immortal, LT, and VTMemory Areas

10Samples

Real-timeThread Type
Test Conditions

no operation.

Algorithmic
Functions

Heap, Immortal, LT, and VTMemory Areas

10Samples

Real-timeThread Type
Test Conditions

Figure 18. Execution Time vs. Memory Area

26

Success Criteria: The throughput values shall be within 5 per cent across all memory
types.

Result: As tabulated in Figure 24, the percent variation of operation execution across all
memory areas was less than 4 per cent, thus meeting our success criteria.

Division Operation

Log Operation

No Operation

1 2 3 4
Type (1=Heap, 2=Immortal,
3=LT Memory, 4=VT Memory

0.2
0.4
0.6
0.8

1
1.2

Ti
m

e
(m

ic
ro

se
co

nd
s)

Min (µs) % Delta

Division 0.5300 0.5500 4%

Log 1.0400 1.0667 2.5%

No op 0.3667 0.3700 0.9%

Max (µs) % Delta

0.5300 0.5500 4%

1.0400 1.0667 2.5%

No op 0.3667 0.3700 0.9%

Figure 19. Execution Time vs. Memory Area Results

3.4.3 Memory Area Entry/Exit

Description: Log timestamps before entering a Memory Area and immediately upon
exiting. Also record timestamps prior to leaving the scope and immediately after leaving
the scope. Each thread will execute at a 20-Hz frame rate.

Success Criteria: Average memory area entry time shall be 100 microseconds or less.
Average memory area exit time shall be 100 microseconds or less. The test is illustrated
in Figure 25.

27

 • Description
– Measure the time required to enter into a memory a region and

exit out of a memory region.
– Compute the average entry and exit times for all memory areas.

Heap, Immortal, LT, VT Memory Areas
100 Samples

Real - time Thread Type

Test Conditions

Memory Areas
100 Samples

Real - time Thread Type

Test Conditions

RT RT

time

execution
time

Figure 20. Memory Area Entry/Exit

Results: The average memory entry and exit times were under 20 microseconds for all
measured memory types. Therefore, this test passed the success criteria. The exit times
for LT memory and VT memory was substantially more than for other memory areas
because the garbage collector is executed on these memory areas when their scope is
freed. See Figure 26 for a graph mapping the time to enter and exit the various memory
areas.

Memory Area
Entry Time

Memory Area
Exit Time

1 2 3 4
Type (1=Heap, 2=Immortal,
3=LT Memory, 4=VT Memory)

0
4
8

12
16
20

Ti
m

e
(m

ic
ro

se
co

nd
s)

Scoped Memory
Area

Figure 21. Memory Area Entry/Exit Results

28

4 Application Testing

The application test suite consists of a set of end-to-end application test scenarios and a
flight control function. The end-to-end test scenarios were designed to investigate
performance of component, middleware, and JVM interactions and behaviors in the
context of a representative cyclically executing avionics application architecture. The
flight control function was designed to investigate performance of a representative
numerical algorithm.

4.1 End-to-End Application Testing

When testing the feasibility of a large-scale mission critical embedded system, a balance
between a small-scale prototype and full-scale development was considered. Small-scale
prototypes provide an early indication of the predicted behavior of a full-scale system.
Unfortunately, costly problems sometimes occur when these prototypes are extrapolated
to a large-scale system. Problems range from unexpected increase of processor
throughput, increase of memory utilization, increase use of scheduling resources. A full-
scale development model requires a significant amount of manpower to develop.

 To balance these forces, various size scenarios were developed by combining a number
of slightly modified small-scale scenarios into larger-scale scenarios. This collection of
scenarios provided sufficient test coverage for predicting the behavior of a full-scale
mission-critical embedded system at reduced development costs.

Leveraging technology from the DARPA Model-Based Integration of Embedded
Software (MoBIES) program allowed for rapid development of these scenarios7. The
MoBIES program includes an Open Experiment Platform (OEP) with an XML
configuration framework and development tool set. The OEP provides a number of
different run time product scenarios which illustrate various configurations of
component-based real-time embedded systems. These scenarios contain representative
component configurations and interactions, but without representative functionality to
ease development and avoid classification concerns.

The MoBIES process development for Java is illustrated in Figure 27. A MoBIES
configuration file in XML format was developed from the MoBIES product scenarios.
A C++ translator converted the configuration file from XML to C++ header code and the
Java translator converted the configuration file from XML to Java code. A Java event
channel was developed utilizing the real time features of Java to replace services
provided by the C++ Bold Stroke Architecture. The software components were
translated from C++ to Java. A make file was used to build the C++ and Jakarta-ANT
was used to build the Java. This parallel development effort provided for a side-by-side
comparison of interpreted Real-Time Java to compiled C++.

7 http://dtsn.darpa.mil/ixo/mobies.asp

29

C++ OEP Java Test
Applicatio

Java
Build

Java
Config.
Code

C++
Build

C++
Config . File

C++
Translator

MoBIES
Configuration Files

XML Format

MoBIES Product
Scenarios Models

Bold Stroke
Infrastructure

New Java
Component

Library

Side-by-Side
Comparison

Event
Channel

C++ MoBIES
Component

Library

Java
Translator

 Figure 22. Leveraging of MoBIES Technology

For benchmarking purposes, a modified version of a MoBIES Product Scenario with
oscillating modal behavior was selected. This product scenario has been identified as the
“1X” scenario and is illustrated in Figure 28. The original version provided use of three
rate group priority threads (20-Hz, 5-Hz, and 1-Hz), event correlation, and modal
behavior. The benchmark version preserved these attributes and provided for a more
realistic ratio of “full channel” and Event Registration Manager (ERM) event
notifications8. Full channel events include scheduling and dispatching support, while
ERM notification bypasses scheduling and provides a direct connection between supplier
and consumer components for significantly increased performance. This product
scenario has been identified as the “1X” scenario.

The bottom Infrastructure layer contains the frameController and the event
channel. For simplicity, the event channel is not shown in Figure 28, but its role will be
described here. The frameController is activated via a 20-Hz periodic timer and
runs at the highest priority. The frameController pushes events to components in
the Physical Device layer as shown via Push() invocations (1 through 4). These
Push() invocations actually represent a multiple step process that includes an event
supplier (e.g., frameController) invoking an event channel method to publish an
event, the event channel determining which event consumers, if any, have subscribed to
the event, and then the event channel invoking Push() methods on any subscriber
components (e.g., device1). The frameController propagates these events at
specified periodic intervals: 20-Hz for the device1 component, 5-Hz for the device3
and device4 components, and 1-Hz. for the device2 component. Since it runs at the
highest rate, the device1 component is scheduled at the highest priority in rate

8 Tim Harrison and David Levine and Douglas C. Schmidt, “The Design and Performance of a
Real-time CORBA Event Service”, OOPSLA 1997, October 1997.

30

monotonic manner and is the second component to be activated. The device1
component is activated from a full channel event dispatch originating from the
frameController. The remainder of the 20-Hz components (Global Positioning
System (GPS), airframe, and tacticalSteering) are executed in turn by
streamlined ERM events via Push methods (5 through 7). The 5-Hz components on the
right side of Figure 28 execute in a similar manner at a medium priority. As depicted in
the middle of Figure 28, a full channel event is delivered to the pilotControl
component only after both device2 and device3 have published events, resulting in a
1-Hz low-priority invocation. This combination technique is referred to as “AND”
correlation. In this particular case, the two invocations shown (16 and 17) represent the
publication of events to the event channel; only a single invocation to the
pilotControl component would be made by the event channel (via 17). Each
pilotControl execution results in a toggling between tactical steering (i.e., Mode
“TAC”) and navigation steering (Mode “NAV”) via invocations to the
tacticalSteering and navSteering components (18 and 19). The modal
components (tacticalSteering and navSteering) are designed to only publish
events when active. The navDisplay receives any event published by either of the
modal steering components (8, 12, and 15), a technique referred to as “OR” correlation.
When taken together, this 1X scenario provides a realistic multirate cyclic avionics
execution context, but with a very small number of application components.

Physical
Device Layer 1 Hz: Mode Change

Low Priority

20 Hz; Tactical Steering
High Priority
5 HZ: Steering Point
Medium Priority

tacticalSteering
Modal navDisplay :

Display navSteering :
Modal

navSteeringPts :
Passive

navigator:
PushDataSource

pilotControl :
ModeSource

GPS :
Device

OR
Correlation

airframe :
LazyActive

AND
Correlation

Full Channel
Ev ents

8. Push() 15. Push()

12.Push()

6. Push()

7. Push() 18. Set()
19. Set()

11. Push()

14. Push()

10. SetData1()

13. SetData2()

17. Push()
16. Push()

5. Pus h()

9. Push()

Infrastructure
 Layer frameController :

FrameController

Full Channel
Events 1. Push() 2. Push() 3. Push()

4. Push()

device1 :
Device device4 :

Device
device2 :
Device device3 :

Device

Applicatio n
 Layer Highlights

– Multiple Rates
– Event Correlation
– Modal Behavior
– Developed in

Real - Time Java
and C++

Figure 23. 1X Test Scenario

The other derived scenarios are illustrated in Figure 29. The highlighted 100X scenario
contains a representative number of components and events as representative avionics
mission computing systems and is used to evaluate success criteria. The Java 100X

31

performance was quick enough that the processing for the different rates always
completed prior to the start of the next 20-Hz (fastest rate) frame, avoiding preemption. A
Java 200X scenario was therefore created to measure the effects of preemption on
performance and further investigate scalability. These expanded scenarios considered
typical production development by increasing the number of component types and
decreasing the percentage of full channel notifications as the number of component
instances increase. As a result of the modal behavior of the scenario, the percentage of
full channel notifications varies depending on the operation mode of the scenario.

To provide comparable tests, the preexisting MoBIES C++ application components were
directly translated to Java. On the C++ side, the preexisting full-scale middleware
services (e.g., CORBA real-time event service) were replaced with lightweight POSIX
wrappers and prototype services that directly matched the features included in the Java
event service prototype. While these implementations do not leverage language-specific
features and idioms, this approach does provide a fair side-by-side comparison of
interpreted Real-Time Java to compiled C++ in a realistic avionics application context.

Copy
20 Copy

…
Copy
2

Independent Sets of
1X Scenarios

Single Physical Device Layer

Single Infrastructure Layer

Copy
1

Component
Instances

Component
TypesScenario

1604 140200X

804 70100X

404 3550X

164 1420X

12 71X

Instances
Component

TypesScenario

1604 140200X

804 70100X

404 3550X

164 1420X

12 71X

Figure 24. Larger Scale Scenarios

A number of RTSJ features associated with scheduling and event handling are used in
these tests and listed in Figure 30. RTSJ class types are listed in italics.

32

Object Name:
Class Name

Purpose

frameController:
FrameController
(extended from RealtimeThread)

Dispatches start of rate group events to activate components in
the physical device layer.

fcPeriodics:
PeriodicParameters

Set the start time, period, cost, and deadline for the frame
controller.

fcPriority :
PriorityParameters

Sets the priority of the frame controller’s periodic parameters.

fcStartTime:
RelativeTime

Sets the start time for the frame controller’s periodic parameters.

fcPeriodicTime: RelativeTime Sets the period, cost, and deadline for the frame controller’s
periodic parameters.

eventQueue[n]: EventQueue
(extended from BoundAsyncEvent
Hander)

Stores received and dispatched events from a particular rate
group. n represents the number of rate group threads.

eqAsyncEvent: AsyncEvent Enables the event queue dispatcher when an event is received.

eqPriority: PriorityParameters Sets the priority of the event queue.

Table 6. RTSJ Feature Usage

4.1.1 Steady-State Execution Time

Test Description: Measure the frame initiation, periodic application processing, and
infrastructure processing for each test scenario. For the Java implementation, execute
the processing within real-time threads (not No Heap Real-time Threads) in heap memory
(not immortal memory).

Performance Success Criteria: The software system shall support execution of multiple
periodic rates of application components up to 20 Hz. The execution time required for
infrastructure services (e.g., middleware, JVM, operating system) shall not exceed
roughly 10 per cent of the total processing time for the set of services included in this
benchmark.

Performance Results: The results from the Java and C++ 100X scenarios are illustrated
in Figure 31. The figure displays 16 seconds of processing time (20 samples per second
for 16 seconds for 320 total samples). The 2-second cyclical (40 samples at 20 Hz)
processing represents the scenario’s modal behavior, with the system changing mode
each second. Mode TAC requires more execution time than Mode NAV due to a greater
number of components that run at the highest rate. The 20-Hz line represents the sum of
the processing time within each 20-Hz period for all 20-Hz rate components. The 5-Hz
line shown is obtained by summing all of the associated component execution times over
a 200-millisecond period and dividing the sum by four to normalize it to the 20-Hz data.
Similarly, the 1-Hz and infrastructure lines indicate the aggregate time of 1-Hz

33

components and infrastructure processing for a 1 second period, scaled to 20-Hz periods.
Thus, within each mode, adding up the times for each rate provides the average execution
time used within each 20-Hz processing frame. For example, if the beginning of the RT
Java time trace is observed, approximately 0.1 + 3.0 + 4.1 + 7.6 = 14.8 milliseconds out
of every 20-Hz frame are consumed by application and infrastructure execution, leaving
50 – 14.8 = 35.2 milliseconds of idle time in each frame on average.

Steady State TimeSteady State Time
C++ Steady State

Processing for 100X
Java Steady State

Processing for 100X

0

1

2

3

4

5

6

7

8

1 23

45

67

89

11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

0

0.5

1

1.5

2

2.5

3

3.5

1 19

37

55

73

91

10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

C++ Steady State
Processing for 100X

Java Steady State
Processing for 100X

0

1

2

3

4

5

6

7

8

1 23

45

67

89

11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

0

0.5

1

1.5

2

2.5

3

3.5

1 19

37

55

73

91

10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

Figure 25. Steady-State Execution Time 100X Scenario

Using approximately 800 software components, the Java successfully repeated the C++
real-time behavior and properly supported the periodic rates. The 100X scenario
processed approximately 600 full-channel events and 10,000 ERM events per second. All
deadlines were achieved with 85.05 per cent of the processor utilization available for
application processing.

The samples of peak usage of infrastructure services (i.e., while in Mode TAC) are
shown in Figure 32. With the Java 100X scenario, the infrastructure services peaked at
14.95 per cent of the total processing time in Mode TAC and the C++ 100X scenario
peaked at 6.30 per cent. Both the Java and C++ met the performance criteria, but the Java
implementation required roughly 2.5 times as much execution time. With the 200X
scenario, all periodic frame deadlines continued to be met, but higher rate processing did
preempt longer-duration lower rate processing. These results indicated that both the
behavior and the performance of priority preemption was acceptable for this scenario.

34

0.020 6.511 6.491 6.500 200X
0.012 3.152 3.140 3.144 100X
0.016 1.499 1.483 1.488 50X
0.004 0.550 0.546 0.548 20X
0.001 0.060 0.059 0.059 1X

C++

0.024 15.077 15.053 15.061 200X
0.019 7.473 7.453 7.461 100X
0.020 3.755 3.735 3.742 50X
0.006 1.544 1.538 1.541 20X
0.002 0.210 0.208 0.209 1X

Real -
Time
Java

Deviation Max Min Ave Scenario

0.020 6.511 6.491 6.500 200X
0.012 3.152 3.140 3.144 100X
0.016 1.499 1.483 1.488 50X
0.004 0.550 0.546 0.548 20X
0.001 0.060 0.059 0.059 1X

C++

0.024 15.077 15.053 15.061 200X
0.019 7.473 7.453 7.461 100X
0.020 3.755 3.735 3.742 50X
0.006 1.544 1.538 1.541 20X
0.002 0.210 0.208 0.209 1X

Real -
Time
Java

Deviation Max Min Ave Scenario

Table 7. Infrastructure During Peak Operation (milliseconds)

Determinism Success Criteria: The variability in the initiation of periodic processing
frames shall not exceed 1 per cent of the associated period. The variability in the time
required to process the application within each execution rate shall not exceed 5 per cent
of the associated period.

Determinism Results: The variability in start of processing was less than 0.3 per cent for
all scenarios of both Java and C++, easily beating the success criteria. The specific times
measured between successive processing frames, and the associated jitter measured for
each rate within the 100X scenario is shown in Figure 33. In addition to being within the
success criteria, results indicate the deviation was evenly distributed around the average.
Typically, a deviation in one processing frame was accompanied by an equally opposing
deviation in the following frame (e.g., a 20-Hz frame time of 50.04 milliseconds in one
frame would be immediately followed by a frame time of 49.96 milliseconds).

0.04 1000.02999.981000.001 Hz
0.05 200.02199.97200.005 Hz
0.03 50.0149.9850.0020 Hz

C++

0.08 1000.04999.961000.001 Hz
0.31 200.15199.84200.005 Hz
0.13 50.0749.9450.0020 Hz Real -

Time
Java

Deviation MaxMinAveFrame

0.04 1000.02999.981000.001 Hz
0.05 200.02199.97200.005 Hz
0.03 50.0149.9850.0020 Hz

C++

0.08 1000.04999.961000.001 Hz
0.31 200.15199.84200.005 Hz
0.13 50.0749.9450.0020 Hz Real -

Time
Java

Deviation MaxMinAveFrame

Table 8. Start of Frame for 100X Scenario (msec)

4.1.2 Memory Usage

Test Description: Measure process memory usage of each scenario 5 times over a 20-
second time span following reboot. The measurements were taken by executing a watch
ps from the command line which reported the memory usage every 2 seconds.

35

Performance Success Criteria: The software system shall support execution within a
memory limit of 100 MB, which is representative of associated avionics systems.

Performance Results: The results are provided in Figure 34. Both the Java and C++
implementations met the performance criteria, although a firm conclusion would require
full application and middleware functionality. The C++ utilized less memory than the
Java.

54.88200X
53.36100X
52.5950X
52.1420X
51.841X

C++

63.08200X
62.48100X
62.2050X
62.0520X
61.951X

Real - Time Java

Memory Usage
(megabytes) Scenario

54.88200X
53.36100X
52.5950X
52.1420X
51.841X

C++

63.08200X
62.48100X
62.2050X
62.0520X
61.951X

Real - Time Java

Memory Usage
(megabytes) Scenario

Table 9. Memory Usage

Determinism Success Criteria: The variability in the memory used by the software
system during multiple identical runs shall not exceed 1 per cent.

Determinism Results: Within the precision of the measurement technique, there was no
variation between the memory observed on five successive identical runs.

4.1.3 Duration of Operation

Test Description: Sample times for frame initiation, periodic application processing, and
infrastructure processing, and memory for the 100X scenario for a ten hour period, and
ensure that they remain stable.

Performance Success Criteria: The software system shall support prolonged period of
operation of up to approximately ten hours.

Performance Results: The Java system successfully repeated the real-time behavior of
the C++ and properly supported each of the periodic rates during the extended ten hour
period. The results recorded at the end of operation from the Java scenario are illustrated
in Figure 35, which match the short duration test results reported in the steady state test.
Java memory usage was measured at 62.48 MB and C++ memory usage was measured at
53.37 MB, which matches the short duration test results described in memory test. The
Java and C++ memory remained under the 100 MB success criteria and did not vary
during steady state operation for the ten hour duration. No memory leaks or other
performance degradations were observed.

36

0

1

2

3

4

5

6

7

8

1 23 45 67 89 111 133 155 177 199 221 243 265 287 309

20 Hz-Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

Figure 26. Duration of Operation

4.1.4 Scalability

Test Description: Measure the performance impact associated with adding software
components.

Performance Success Criteria: The software system will minimize the performance cost
for adding software functionality to O (n log n).

Performance Results: Collecting the results from earlier tests, the scalability results for
memory and infrastructure processing during peak operation is illustrated in Figures 36.
Both Java and C++ performed in roughly linear time. The slope of the infrastructure
processing time for Java is roughly 2.3 times the slope of the C++ line. Conversely, the
slope of the memory usage line for C++ is roughly 2.5 times the slope of the Java line.

37

Average Memory Usage

for Different System Sizes

Average Infrastructure
During Peak Operation

0
2
4
6
8

10
12
14
16

0 500 1000 1500 2000
Component

E
xe
c
ut
io
n
Ti

Jav

C+

50
52
54
56
58
60
62
64

0 500 1000 1500 2000
Component Instances

Si
ze
(M
B)

Java

C++

Average Memory Usage
for Different System Sizes

Average Infrastructure
During Peak Operation

0
2
4
6
8

10
12
14
16

0 500 1000 1500 2000
Component Instances

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Java

C++

50
52
54
56
58
60
62
64

0 500 1000 1500 2000
Component
I t

Si
ze

 (M
B

) Java

C++

Figure 27. Scalability

4.2 Flight Control Algorithm

The flight control function contains a representative linear parameter varying (LPV)
controller algorithm similar to those found in avionics embedded systems. The algorithm
contains relatively heavy use of floating point operations within matrix equations. The
function was translated from C++ to Java in order to provide a side-by-side comparison
of the C++ and Java configurations from a computational perspective. Of special note,
the Java implementation was written to avoid dynamic memory allocation during steady-
state operation to match existing practice in our typical C++ implementations. This
algorithm did not exploit unique real-time features, and was therefore measured in both
real-time and non-real-time Java environments. The flight controls algorithm is
illustrated in Figure 37.

38

• Characteristics

– Representative linear
parameter varying
(LPV) controller
algorithm

– Heavy use of floating
point operations
within matrix
equations

– Translated from C++
to Java

– Does not exploit real -
time features

• Purpose

– Measure relative
performance of Real - Time
Java, C++, and Java in a
representative avionics
algorithm

Figure 28. Flight Controls Algorithm

4.2.1 Steady-State Execution Time

Test Description: Measure the execution time for the flight controls function in a
continuous loop for 1,000 samples. In addition to the C++ and RT Java configurations,
include the Java J2SE with HotSpot for reference. The algorithm is run in the main
program thread, with the Java implementations using heap memory

Performance Success Criteria: Since this test was created to provide a relative
comparison of throughput, no specific success criteria are defined.

Performance Results: The results are shown in Figure 38. For this algorithm, the C++
implementation performed about 40 times faster than RT Java, and the Java performed
about 19 times faster than RT Java on average. The wide deviation and the proximity of
the average and minimum times indicates the presence of timing spikes due to the non-
determinism of the plain Java implementation. Even though memory is neither allocated
nor deallocated during execution, RT JVM tests were repeated in immortal memory to
check for any associated effects. The RT Java average execution time using immortal
memory was measured at 3.498 milliseconds. The time shown in Figure 38 is run outside
of immortal memory. As expected for this test context, memory effects were minor (~0.5
per cent).

39

The relative execution times of the floating point operations is also shown in Figure 38.
Integer operations were also investigated. The results indicated that the performance
difference was not primarily due to arithmetic operations. Profiling was performed on
the RT Java implementation, and no condensed portion of the flight control algorithm
was found to be consuming a majority of the execution time. Given the widely scattered
nature of the performance difference, the performance is speculated to be due to the
interpreted nature of the RT Java implementation and overall overhead associated with
RT JVM memory management.

0.324 0.503 0.179 0.181 Java

0.013 0.097 0.085 0.085 C++

0.092 3.565 3.474 3.479 Real - Time Java

Deviation Max Min Ave

0.324 0.503 0.179 0.181 Java

0.013 0.097 0.085 0.085 C++

0.092 3.565 3.474 3.479 Real - Time Java

Deviation Max Min Ave

Execution Time (milliseconds)

19.7% 36.81% 3.22%

Java C++
Real - Time

Java
19.7% 36.81% 3.22%

Java C++
Real - Time

Java

Total Floating Point Operation
Execution Time Percentage.

Figure 29. Throughput Performance

40

5 Real-Time Java Laboratory Demonstration
In order to show the benefits of Real-Time Java, the RTJES project teamed up with the
Insertion of Embedded Infosphere Support Technologies (IEIST) project to perform a
laboratory demonstration. The demonstration highlighted Real-Time Java code mobility,
distribution, and portability.

5.1 Real-Time Java Demonstration Overview

A top-level overview of the Real-Time Java Demonstration is illustrated in Figure 39.
The main components of this scenario are the Joint Battle Infosphere (JBI), F-15 Fighter
Platform, Command and Control (C2) Platform, Force Template, Guardian Agent, and
Guardian Agent Factory. The JBI represents a military network that is activated during
a battle designed for military assets to publish and subscribe information in real-time.
The F-15 represents one of these military assets engaged in a battlefield scenario to
destroy enemy targets. The F-15 stores critical information about itself in a Force
Template. The Force Template contains mission planning data and mobile code to be
downloaded to a Guardian Agent Factory located on a C2 Platform. The Guardian Agent
Factory is a static “always available” software entity design to create a Guardian Agent
on demand. The Guardian Agent is a dynamic software entity designed to interact with
the JBI to publish and subscribe information for a platform entering the battlefield
scenario. This particular Guardian Agent used in this lab demonstration is for the F-15.
The Guardian Agent filters the information for the F-15 so that the platform only receives
the critical information required for the F-15 pilot to successfully complete his/her
mission. For the lab demonstration, the Guardian Agent Route Threat Evaluator was
performed in Real-Time Java. The real-time platform consisted of the following
components:

1) TimeSys Linux was used as the real-time operating system.

2) TimeSys JTime was used as the real-time JVM.

3) A built in scheduler was developed to support both periodic and aperiodic
scheduling.

4) The UCI Zen ORB was incorporated to provide distribution support using
CORBA.

5) An event service was developed to provide decoupled cross thread
communication between software components of the Route Threat
Evaluator.

The basic scenario consisted of first transferring the Force Template containing the
mobile code and mission planning data from the windows Guardian Agent Factory to the
Real-Time Java Guardian Agent Factory. The Real-Time Guardian Agent Factory in
turn instantiated the mobile code and provided a distributed component for the rest of the
guardian agent to communicate.

41

JB
I

RTJ Guardian
Agent Factory

Event Service
ORB (Zen)

Scheduler (supports periodic and aperiodic scheduling)
JTime

TimeSys Linux

Guardian Agent
Factory Force

Template
Force

Template
Force

Template
Force

Template

Mobile GA
classes

RTJ Guardian
Agent Classes

Guardian
Agent #N

Windows

JBI Updates

Prioritized Threat
Analysis Results

mobile

JB
I

RTJ Guardian
Agent Factory

Event Service
ORB (Zen)

Scheduler (supports periodic and aperiodic scheduling)
JTime

TimeSys Linux

Guardian Agent
Factory Force

Template
Force

Template
Force

Template
Force

Template
Force

Template Force
Template
Force

Template Force
Template
Force

Template Force
Template
Force

Template Force
Template

Mobile GA
classes

RTJ Guardian
Agent Classes

Guardian
Agent #N

Windows

JBI Updates

Prioritized Threat
Analysis Results

mobile

Figure 30. Real-Time Java Demonstration

5.2 Route Threat Evaluator

Figure 40, shows more of a detailed version of the internal workings of the Route Threat
Evaluator (RTE). The RTE Master Server Factory generates an RTE Master used for
registration of the Guardian Agent. Upon completion of Guardian Agent registration,
the Guardian Agent receives a personal RTE platform server to perform communication.
The RTE platform server is part of the mobile code that was transmitted during
initialization.

The RTE also handles route updates. The new route is sent to the RTE platform server
after registration has been completed. The route updates are scheduled at a low priority
to ensure threat analysis during operation has higher priority.

The final task of the RTE is threat analysis. The RTE analyzes the position and two
dimensional signature of the platform to ensure proper threat analysis is performed. The
RTE provides a complete list of all the segments of the route exposed during execution
and the time of impact to the exposure is also computed.

The RTE can be used for future IEIST demonstration and provides software modules that
are currently being incorporated into the rest of the Guardian Agent to improve
performance. The current capabilities of the RTE are listed below.

1) Dynamic Class Loader – Allows for real-time customization of the RTE for
specific platform requirements.

2) Multiple Priority Scheduling – Used to provide precedence for target evaluation
over other tasks like platform registration.

42

3) Multiple Platform Registration – Allow for multiple platforms to use the RTE for
threat evaluation.

4) Two Dimensional Signature Analysis – Takes into consideration the two-
dimensional signature of the platform instead of a single point solution.

5) Multiple Threat Evaluation – Tested with up to 1000 threats for a given analysis.

routeThreatEvaluatorDriver :
RouteThreatEvaluatorDriver

rtePlatformServerImpl :
RouteThreatEvaluatorPlatformServerImp

routeEvaluator :
RouteEvaluator

threatEvaluator :
ThreatEvaluator

orbService :
UUOrbService

routeThreatEvaluatorFactory :
RouteThreatEvaluatorServerFactory

routeTheatEvaluatorClientImpl :
RouteThreatEvaluatorClientImpl 12. Update()

17. Update()

rteMasterServerImpl :
RouteThreatEvaluatorMasterServerImpl

Client
Side Server

Side
One route threat server
per client. Saves
demuliplexing on the
server end. Candidate for
code mobility.

9. SendRouteUpdate(string)
14. SendUpdate(Threat, Platform)

3. RouteThreatEvaluatorClientImpl()

4. Register(string, RouteThreatEvaluatorClientImpl)

10. SetRoute(string)

11. Push(UUEvent)

15. SetThreat(string)
16. Push(UUEvent)

8. ConfirmRegister(rtePlatformServerImpl)

13. ConfirmRouteUpdate()

18. SendAnalysis(RouteEvaluation, RouteLegExposures)

2. Register(registerRTEMasterServerString, Object)

1. RouteThreatEvaluatorMasterServerImpl()

5. RouteThreatEvaluatorPlatformServerImpl()

7. Register(StringBuffer, RouteThreatEvaluatorClientImpl)

6. Register(rtePlatformServerImpl, Object)

Figure 31. Route Threat Evaluator Scenario

5.3 Distribution Benchmarks

As a result of the demonstration, analysis was performed to determine the effects of
distribution on the RT Java. A driver was developed to exercise the RTE under
maximum conditions. The platforms registered with the RTE were varied with three test
cases (1, 5, and 20 platforms) and the threats were varied in 100 threat increments from 0
threats to 1,000 threats. A side-by-side comparison was performed on regular Java using
the standard Sun ORB and RT Java using the UCI Zen RT ORB. The RTE was hosted
on TimeSys Linux RT OS and the driver was hosted on a non real-time Windows OS
platform.

43

The performance results of the demonstration are illustrated in Figure 41. As shown on
the graph, the standard Java was about 15 times faster than RT Java. These performance
results were consistent but slightly better than early benchmarks with the Flight Controls
Algorithm. The slight improvement in performance can be attributed to the efficiency
improvements incorporated into the UCI Zen RT ORB. Neglecting the effects of
initialization, adding more threats provided linear performance growth with the time
required to produce analysis.

Distribution Test - 20 Platforms

0

5

10

15

20

25

0 200 400 600 800 1000
Threats

Ex
ec
uti
on
Ti
m
e
(s
ec
on

RT Java
Java

Distribution Test - 1 Platform

0
0.2
0.4
0.6
0.8

1
1.2

0 200 400 600 800 1000

Threats

Ex
ecu
tion
Ti
me
(se
con
ds)

RT Java
Java

Distribution Test - 5 Platforms

0

1

2

3

4

5

6

0 200 400 600 800 1000
Threats

Ex
ec
uti
on
Ti
m
e
(s
ec
on
d

RT Java
Java

• Test Setup
– Using Route Threat Evaluator

vary platforms and threats and
measure performance

• Results
– Consistent linear performance

with both RT Java and Java

Distribution Test - 20 Platforms

0

5

10

15

20

25

0 200 400 600 800 1000
Threats

E
xe

cu
tio

n
Ti

m
e

 (s
ec

on
ds

) RT Java
Java

Distribution Test - 1 Platform

0
0.2
0.4
0.6
0.8

1
1.2

0 200 400 600 800 1000

Threats

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

RT Java
Java

Distribution Test - 5 Platforms

0

1

2

3

4

5

6

0 200 400 600 800 1000
Threats

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

RT Java
Java

• Test Setup
– Using Route Threat Evaluator

vary platforms and threats and
measure performance

• Results
– Consistent linear performance

with both RT Java and Java

Figure 32. Distribution Benchmarks

44

As a final metric, the deviation was measured using 900 threats, 25 samples, and varied
platform quantities. The Real-Time Java deterministic performance was significantly
better than the standard Java in all cases. Even when taking into consideration the
improved execution performance of the standard Java, the absolute deviation for the RT
Java was better than the standard Java. These deterministic performance test results are
illustrated in figure 42.

 Deviation was measure using 25 samples,
900 threats, and varied platform quantities

Platforms RT Java %
RT Java Abs
Dev (ms) Java %

Java Abs Dev
(ms)

1 0.49% 5.23578 10.61% 7.54114
5 0.29% 15.78437 5.32% 18.14233

20 0.08% 16.92459 1.29% 17.18519

Table 10. Deterministic Performance of Route Threat Evaluator with 900 Threats

45

6 Summary
Java offers better portability, mobility, productivity, and aspect programming than other
more traditional embedded software programming languages such as C++ and Ada 95.
Also, Java provides interoperability with other programming languages. One
requirement in the past that has precluded developers from using Java for the embedded
environment has been real-time deterministic performance. The Real-Time
Specification for Java (RTSJ) was written to encourage Java Virtual Machine (JVM)
development to help bridge this real-time gap for the embedded software community.
Unfortunately, 3 years have passed since initial release of the RTSJ, and there is only one
commercially available product called TimeSys JTime Java that is RTSJ compliant. We
have completed significant benchmarking on JTime and find the product to have
satisfactory real-time performance but poor throughput performance. We observed
significant reduction in throughput performance when using JTime compared to C++ and
the standard Sun JDK Java. JTime offers Ahead Of Time (AOT) compilation to help
improve performance without precluding the use of code mobility for non-precompiled
parts of the code. Our experimentation with JTime AOT has demonstrated some
improvement but not to the order of magnitude required for a production ready program.
Also, the limited platforms available with JTime (only available on TimeSys Real-Time
Linux) prevent the use of this product on most anticipated hardware platforms.

Principal remaining areas of concern for our applications include startup time, memory
management, and mixed language support. Some of these investigations will require
running on an embedded target platform (e.g., without file systems), which were not
currently supported in our experimentation system.

Our results indicate that the basic prerequisite real-time characteristics for mission-
critical avionics systems are slowly emerging in commercial implementations. We
experienced great portability, mobility, productivity, and aspect programming benefits in
working with Java. However, the future of RT Java in whatever application depends
largely on its being embraced by the commercial market place. Without the support of
these vendors, it will be at most a fringe player with performance substantially less than
that of C++.

46

7 Reference Documents

7.1 Boeing Documents

E. Pla, J. Urnes, K. Luecke, and D. Sharp, “Test Descriptions and Results for the Real-
Time Java for Embedded Systems Program,” Contract Number F33615-97-D-1155,
Delivery Order (DO) 0008, 17 April 2003.

7.2 Other Documents

R Klefstad, A. S. Krishna, and D.C. Schmidt, “Design and Performance of a Modular
Portable Object Adapter for Distributed, Real-Time, Embedded CORBA Applications,
Proceedings of the Distributed Objects and Applications (DOA) conference, Irvine, CA,
October/November 2002.

A. Corsaro and D.C. Schmidt, “Evaluating Real-Time Features and Performance for
Real-time Embedded Systems,” Proceedings of the 8th IEEE Real-time Technology and
Applications Symposium, September 2002.

F. Hunleth, R. Cytron, and C. Gill, “Building Customizable Middleware using Aspect
Oriented Programming,” OOPSLA 2001 Advanced Separation Of Concerns Workshop,
October 2001.

C. P. Satterthwaite, D.E. Corman, and T.S. Herm, “Transforming Legacy Systems To
Obtain Information Superiority,” 6th International Command and Control Research and
Technology Symposium, June 2001.

G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, M. Turnbull, and R.
Belliardi, “The Real-Time Specification for Java” Addison-Wesley, 2000.

B.S. Doerr and D.C. Sharp “Freeing Product Line Architectures from Execution
Dependencies,” Software Technology Conference, May 1999.

D.C. Sharp, “Reducing Avionics Software Cost Through Component Based Product Line
Development,” Software Technology Conference, May 1998.

D.C. Sharp, “Avionics Product Line Software Architecture Flow Policies,” AIAA/IEEE
Digital Avionics Systems Conference, October 1999.

Harrison T., D. Levine, and D.C. Schmidt, “The Design and Performance of a Real-time
CORBA Event Service,” OOPSLA 1997, October 1997

D.C. Winter, “Modular, Reusable Flight Software For Production Aircraft,” AIAA/IEEE
Digital Avionics Systems Conference Proceedings, October, 1996, pp. 401-406.

47

Appendix A. IEEE RTAS ’03 Conference Paper
Evaluating Real-Time Java for Mission-Critical

Large-Scale Embedded Systems

David C. Sharp, Edward Pla, & Kenn R. Luecke
The Boeing Company, Saint Louis, Missouri, USA

{david.sharp,edward.pla,kenn.r.luecke}@boeing.com

Ricardo J. Hassan II
Jet Propulsion Laboratory,Pasadena, California, USA

ricardo.hassan@jpl.nasa.gov

Abstract

 Many of the benefits of Java, including its
portability, networking support, and simplicity, are of
increasing importance to large-scale distributed real-
time embedded (DRE) systems, but have been
unavailable due to the lack of acceptable real-time
performance. Recent work establishing the Real-Time
Specification for Java (RTSJ) [1] has led to the
emergence of Real-Time Java Virtual Machines (RT
JVMs) that promise to bridge this gap. This paper
describes benchmarking results on an RT JVM. This
paper extends previously published results [2] by
including additional tests, by being run on a recently
available pre-release version of the first commercially
supported RTSJ implementation, and by assessing results
based on our experience with avionics systems in other
languages.

1. Introduction

The Boeing Company is currently experimenting
with Real-time (RT) Java as part of the Air Force
Research Laboratory (AFRL) RT Java for Embedded
System (RTJES) program [1]. This program investigates
the use of Java in hard and soft large-scale distributed
real-time embedded (DRE) avionic system applications.
The program has two primary objectives: benchmarking
RT Java implementations to assess their suitability for
this domain, and demonstrating the operational benefit of
RT Java features for network-centric applications. This
paper describes results of a portion of the network-
centric benchmarking effort on a pre-release version of
the commercial JTime® RT JVM from TimeSys that
implements the RTSJ.

[1] This work was sponsored by the Air Force Research Laboratory,
Wright-Patterson Air Force Base, Information Directorate, under
contract F33615-97-D-1155-0008.

The RTSJ defines a set of classes which provide
capabilities supporting real-time operation in a Java
environment, including threading, scheduling, event
handling, synchronization, and memory management.
Specially constructed RT JVMs support the real-time
semantics defined in the class library specification.

Our benchmarking efforts focus on assessing the
performance and determinism of systems using these RT
JVM features via two sets of tests. The first set of tests
(which are discussed in this paper) assesses the
characteristics of individual RTSJ features. The second
set of tests (which are not discussed in this paper)
investigates performance within an environment that is
representative of an actual avionics application, based on
our experience with reusable component-based avionics
systems on the Boeing Bold Stroke initiative [3]. We
plan to publish these latter test results when complete.

The remainder of this paper is organized as follows.
Section 2 describes the experimental system
configuration. Section 3 describes the low-level RTSJ
benchmarking results. Concluding remarks and
acknowledgements follow in Sections 4 and 5,
respectively.

2. Experimentation System

This section describes the configuration of both the
hardware and software test platform.

2.1. Hardware System

A Dell GX 150 computer was used for Java
benchmark development and execution. This computer
has a 1.2 Gigahertz Pentium 4 single processor. It has a
12 GB hard drive, 256 MB of RAM, 256 KB of cache
memory, and 900 MB of swap memory.

48

2.2. Software System

As of this writing, the only known commercial
implementation of the RTSJ is from TimeSys, for which
we received a pre-release version. Prior to availability of
this product, we developed tests and measured results on
the openly available Reference Implementation (RI), also
from TimeSys. The RI was designed to investigate and
demonstrate the semantics of the RTSJ, not for
production-quality run-time performance. Prior RI
benchmarking confirmed this [2], but these results are
not included here due to space constraints.

The test platform was configured with Red Hat
Linux version 7.2, with real-time support provided by
TimeSys Linux/NET for X86 UNI platform operating
system extensions, version 3.1.214c, and TimeSys RT
JVM version 3.5.3.

The JVM was executed with a memory allocation
pool of 50 MB (-Xms50M). The immortal memory size
was set to 80 MB (IMMORTAL_SIZE=80000000).

The tests were developed with the Jakarta Ant
version 1.4.1 build tool with javac from the Java
Development Kit (JDK) version 1.2.2. This javac
version was selected due to version compatibility issues
in libraries used in the avionics application test set. No
just in time or ahead of time compilation was performed
for these tests.

3. RTSJ Testing

These tests focus on assessing the performance of
specific RTSJ capabilities. These tests are being added to
the RTJPerf open source RT JVM benchmarking suite
established by Angelo Corsaro at the University of
California, Irvine (UCI) [4] and Washington University
in St. Louis. Taken together, tests were created to assess
determinism, latency, and throughput associated with
threads, scheduling, memory management,
synchronization, time, timers, asynchrony, exceptions,
and class loader and dynamic linking. Only the tests
deemed of most importance are included here due to
space constraints.

For each test, a description of the test is included,
along with success criteria, and experimental results and
analysis. The success criteria are based on requirements
and experiences with avionic mission computing
systems. While these criteria are intentionally domain
specific, they do capture expectations for an important
category of embedded systems. In all cases, the raw
measured values are provided for comparison against
criteria in other domains.

3.1. Throughput

The RTSJ introduces two new types of threads as
shown in Figure 1: RT threads and No Heap RT (NHRT)
threads. RT threads support, at a minimum, basic real-
time preemptive scheduling. No Heap RT threads add the
guarantee that execution will be independent of garbage
collection but with the additional restriction that heap-
based memory not be used. This section outlines tests
assessing the throughput of these different thread types in
varying execution environments.

ja v a . la n g . Th r e a d

ja v a x . r e a lt im e . R e a lt im e Th r e a d

ja v a x . r e a lt im e . N o H e a p R e a lt im e Th r e a d

Figure 1. Thread Inheritance in RT Java

3.1.1 Thread Throughput

Description: Record the execution time of a
computationally intensive algorithm, representative of
avionics mission computing processing, when run in
different thread types: NoHeapRealtimeThread (NHRT),
RealtimeThread (RT), and java.lang.Thread. All three
thread types will be processing in a 20 Hz frame. In the
thread’s run() method, log timestamps before and after
the algorithm executes. This computationally intensive
algorithm is a flight controls algorithm that is CPU
intensive and reads data from two different input files.
The flight controls algorithm performs all of its memory
allocation and reference storage upon initiation. The
NoHeapRealtimeThreads were executed using Immortal
memory which has no garbage collection while the
RealtimeThreads were executed from heap memory.

Success Criteria: Throughput in different threads
shall not vary by more than 1%

Results: The throughput for NHRT, RT, and normal
java threads on the selected algorithm was comparable.
The largest percentage time difference between the three
thread types was 0.643% for the NHRT and RT threads.
See Table 1 for more throughput comparisons between
NHRT, RT, and normal threads.

49

Table 1. Algorithm Execution Times Within
Different Thread Types (milliseconds)

Time in
NHRT

Threads

Time in

RT
Threads

Time in
Normal
Threads

Time (%

Difference)

Avg 3.5201 3.5087 3.5174 0.324%
Max 3.5372 3.5601 3.5439 0.643%
Min 3.5109 3.4977 3.5076 0.376%

3.1.2 Thread Throughput With Contending
Background Threads

Description: Record the execution time of the same
mission computing algorithm, when run with different
scheduling parameters and competing threads. The
algorithm is CPU intensive and executes in a
NoHeapRealtimeThread with a priority of 260. Measure
how the same functionality scheduled with varying
numbers of lower priority threads behaves. The
contending threads execute in RealtimeThreads with
lower priorities. The lower priority threads log
timestamps and invoke yield() methods. All threads
are periodic, executing at a 20 Hz frame rate.

Success Criteria: Difference between the tests with
no background threads and the tests with 15 background
threads shall be less than 5%.

Result: The first case schedules only the thread
being analyzed, while the second case schedules the
thread to be analyzed along with 15 background threads.
The difference between the maximum, minimum, and
average data points were all below 1%. This meets our
success criteria. See Table 2 for detailed metrics.

Table 2. Algorithm Execution Times with

Contending Background Threads (milliseconds)

0 Other
Threads

15 Other
Threads

%
Difference

Avg 3.5253 3.5290 0.1039%
Max 3.5395 3.5669 0.7673%
Min 3.5218 3.5244 0.0756%

Jitter 0.0177 0.0424

3.2. Determinism

The RTSJ provides direct support for initiating
functionality that needs to be run at periodic intervals
either via thread scheduling or via events driven by
timers. This section outlines tests investigating timing

jitter associated with initiating and completing periodic
activities.

3.2.1 Periodic Start of Frame Determinism

Description: Using the PeriodicParameters
class, establish a periodic thread. Immediately after the
waitForNextPeriod() call, log a timestamp and
calculate the time between invocations. Two tests were
conducted. The first test was executed with only a single
20 Hz NoHeapRealtimeThread being analyzed, while the
second test was executed with the 20 Hz
NoHeapRealtimeThread thread being analyzed while
another fifteen lower priority RealtimeThread threads
were executing at a 20 Hz frame rate. The lower priority
threads log timestamps and invoke yield() methods.
All threads are periodic, executing at a 20 Hz frame rate.

 Success Criteria: Jitter shall be within 1% of the
period. With a representative avionics processing rate of
20 Hz, the maximum allowable jitter is 0.5 milliseconds.

Results: The maximum jitter in both tests easily
surpassed the success criteria of 0.5 milliseconds. See
Table 3 for details.

Table 3. 20 Hz Frame Execution Times Measured

at Frame Start Up (milliseconds)

 0 Other Threads 15 Other Threads
Avg 50.0 50.0
Max 50.0048 50.0241
Min 49.9954 49.9794

Difference 0.0094 0.0447

3.2.2 Periodic End of Frame Determinism

Description: Using the PeriodicParameters class, set
up a periodic NoHeapRealtimeThread thread.
Immediately after the waitForNextPeriod() call,
execute an algorithm of significant duration but not
longer than the period. After the algorithm completes,
log a timestamp and calculate the difference between
successive timestamps. Repeat with and without
competing lower priority RealtimeThread threads as for
the previous test. The lower priority threads log
timestamps and invoke yield() methods. All threads
are periodic, executing at a 20 Hz frame rate.

Success Criteria: Completion time differences shall
be under 0.5 milliseconds. This represents 1% of a 20 Hz
frame.

Results: The maximum jitter for 0 and 15 competing
threads was 0.0282 milliseconds and 0.1441
milliseconds, respectively, which easily met the success
criteria. See Table 4 for specific measurement results.

50

Table 4. Frame Execution Times Measured at

Frame Completion (milliseconds)

 0 Other Threads 15 Other Threads
Avg 50.0000 50.0000
Max 50.0153 50.0688
Min 49.9870 49.9247

Difference 0.0282 0.1441

3.2.3 Periodic Event Determinism

Description: Measure the jitter in PeriodicTimer
driven AsyncEvents. Immediately inside the
handleAsyncEvent method, log a timestamp and
calculate the time between invocations. The first test was
executed with only a single 20 Hz
NoHeapRealtimeThread being analyzed, while the
second test was executed with the 20 Hz
NoHeapRealtimeThread thread being analyzed while
another fifteen lower priority RealtimeThread threads
were executing at a 20 Hz processing rate also.

Success Criteria: Periodic event timing differences
shall be under 0.5 milliseconds, 1% of a 20 Hz (50
millisecond) frame.

Results: The first case was run with the
AsyncEventHandler analyzing a single thread while the
second case was executed with the AsyncEventHandler
analyzing a single thread with fifteen background
threads. The third case was run with the
BoundAsyncEventHandler analyzing one thread while
the fourth case was executed with the
BoundAsyncEventHandler analyzing a single thread with
fifteen background threads. In all cases, the jitter met the
success criteria. See Table 5 for more completion time
comparisons with and without competing threads.

3.3. Latency

This section details tests assessing delays associated
with context switching, synchronization, and event
delivery. The RTSJ supports event-based programming
for two types of event handlers: bound and unbound. A
bound event handler creates one thread that is
permanently bound to the handler and remains active for
all event fires. An unbound event handler creates a new
thread with each event fire.

Table 5. 20 Hz Frame Execution Times Measured
at the Event Fire (milliseconds)

0 Other Threads
Unbound /

Bound

15 Other Threads
Unbound /

Bound

Avg 50.0000 /
50.0000

50.0000 /
50.0000

Max 50.0667 /
50.0087

50.0908 /
50.0954

Min 49.9337 /
49.9920

49.9386 /
49.9024

Delta 0.1330 /
0.0167

0.1522 /
0.1930

3.3.1 Context Switch Latency

Description: Initiate a high priority thread and a
lower priority thread. Both threads will be executing at a
20 Hz frame rate. In the higher priority thread, log a
timestamp before the yield() in the run method. In
the lower priority thread, log a timestamp after the
yield() in the run method. Then compute the latency
between the higher priority thread’s timestamp and the
lower priority thread’s timestamp.

Success Criteria: Context switch latency shall be
less than 10 microseconds.

Results: See Figure 2 for a graph of the context
switch latency data samples. The results show a median
of approximately 2.1 microseconds. Some of the samples
spike to 2.3-2.8 microseconds, probably indicating that
some processing in addition to the context switch is
being run following the yield() call. Even with this,
however, the maximum time to switch between threads
was roughly 2.8 microseconds, which is better than the
10 microsecond success criteria.

1.5

1.8

2.1

2.4

2.7

3

1 1000 1999 2998 3997
Samples

Ti
m

e
(m

ic
ro

se
co

nd
s)

Figure 2. Context Switch Latency

51

3.3.2 Priority Inheritance Latency

Description: This test measures a relatively simple
three thread case of priority inheritance. The low priority
thread (LPT) starts and enters a synchronized method.
While in that method, the medium priority thread (MPT)
starts and preempts the LPT. While the MPT runs, a
high priority thread (HPT) preempts the MPT and
attempts to enter the same synchronized method the LPT
presently has a lock on. According to priority
inheritance, the LPT should get boosted up to the priority
of the HPT so it can finish with the synchronized
method, thus allowing the HPT to run as soon as
possible. Log timestamps before and after the calls to the
synchronized method. Also log timestamps at the first
and last instructions inside the synchronized method.
These timestamps are used to measure the boost,
unboost, and total priority inheritance latency times.
Each thread will execute at a 20 Hz frame rate.

Success Criteria: Priority latency shall be under 50
microseconds for boosting and unboosting priorities
combined.

Results: For both cases the maximum latency was
roughly 9.0 microseconds, thus the test passed the 50
microsecond success criteria. See Table 6 for more
priority inheritance boost, unboost, and total latencies.

Table 6. Priority Inheritance Latency
(microseconds)

 Boost Unboost
Latency

(Boost + Unboost)
Avg 5.1372 2.7735 7.9107
Max 6.2626 3.1574 8.9635
Min 4.4778 2.6517 7.1566

Delta 1.7849 0.5057 1.8070

3.3.3 Synchronization Latency

Description: Record the time elapsed to enter a
synchronized method versus a non-synchronized method.
Log timestamps prior to the method call and once inside
the synchronized and non-synchronized methods. Each
thread will execute at a 20 Hz frame rate.

Success Criteria: Synchronization latency shall be
under 5 microseconds of overhead (difference between
synchronized and non-synchronized).

Results: The test was executed for the synchronized
and normal method latency cases. For each case the
latency differences were less than 2 microseconds, thus
this test passes the 5 microsecond threshold. See Table 7
for more synchronized and non-synchronized latencies.

Table 7. Synchronization Latency
(microseconds)

Non-

Synchronized Synchronized

Difference
Avg 1.3351 3.2385 1.9034
Max 1.7257 3.6962 1.9705
Min 1.3153 3.1975 1.8822

3.3.4 Event Latency

Description: Measure the latency from the firing of
an AsyncEvent to the time it is handled. Log timestamps
prior to the fire and once the event is handled. Each
thread will execute at a 20 Hz frame rate.

Success Criteria: Event latency shall be under 100
microseconds.

Results: BoundAsyncEventHandler was used for the
first case and AsyncEventHandler was used for the
second. Both the BoundAsyncEventHandler and
AsyncEventHandler were acceptable for our needs since
all cases met the success criteria. Table 8 compares the
BoundAsyncEventHandler and AsyncEventHandler
latencies. Analysis of the data indicates that a relatively
few measurement spikes were observed as in Section
3.3.1.

Table 8. Event Latency (microseconds)

BoundAsyncEventHandler AsyncEventHandler
Avg 14.675 14.584
Max 27.649 27.241
Min 14.355 14.339

Delta 13.294 12.902

3.4. Memory Management

The RTSJ defines a range of different memory types
to address real-time aspects of memory management and
garbage collection. This section details tests with
allocation throughput, entry, and exit performance for the
Heap, Immortal, Linear Time (LT) Memory, and
Variable Time (VT) memory areas. The Allocation Time
and Throughput Time tests were created by the Jet
Propulsion Laboratory. See Figure 3 for a diagram of
MemoryArea inheritance relationships in the RTSJ. In
Figure 3, the Memory Area classes that are colored
represent the classes with test results included herein.

52

MemoryArea

ImmortalMemoryScopedMemory ImmortalPhysical
Memory

HeapMemory

LT Memory VT Memory LT Physical Memory VT Physical Memory

Figure 3. Memory Area Class Inheritance

3.4.1 Allocation Time vs Memory Area

Description: Measure the time required to allocate
the same sized objects in different memory areas. Place
time stamps before and after the memory allocation code.
Then calculate the difference between before and after
times for memory allocation. Perform this test for
various object sizes from 4 to 16,384 bytes. Each thread
executes at a 20 Hz periodic frame rate.

Success Criteria: Average allocation time less than 2
microseconds/byte shall be acceptable.

Results: The average time to create 64 byte objects
took less than 16 microseconds for all memory areas,
meeting the success criteria. The times for immortal,
linear time, and variable time memory areas were nearly
identical for this test. See Figure 4 for per-byte allocation
times in the different memory areas.

0
0.25

0.5
0.75

1
1.25

1 2 3 4 5 6
Samples (1=4bytes, 2=8bytes, 3=64bytes, 4=512bytes,

5=4096bytes, 6=16384bytes)

Ti
m

e
(m

ic
ro

se
co

nd
s)

Immortal
LT Mem
VT Mem

 Heap

Figure 4. Maximum Memory Allocation Time per

Byte for multiple byte objects

3.4.2 Throughput vs Memory Area

Description: Measure the time needed to execute a
division, trigonometric, and no operation in each memory
area. The division operation is a ‘divide by 2’ while the
trigonometric operation takes the ‘log of 5’. Place time

stamps before and after the call to each operation. Each
thread will execute at a 20 Hz frame rate.

D iv is io n O pe ra tio n

Trig O pe ra tio n

No O pe ra tio n
1 2 3 4

T y pe (1= H ea p , 2= Im m orta l,
3=LT M em ory , 4= V T M em ory

0 .2

0 .4

0 .6

0 .8

1

1 .2

Ti
m

e
(m

ic
ro

se
co

nd
s)

Figure 5. Operation Execution vs Memory Area

Success Criteria: The throughput values shall be
within 5% across all memory types.

Table 9. Operation vs Memory Area

 Min Max % Delta

Float 0.5300 0.5500 4%

Trig 1.0400 1.0667 2.5%

No op 0.3667 0.3700 0.9%
Result: As tabulated in Table 9, the percent variation of
operation execution across all memory areas was less
than 4% thus meeting our success criteria.

3.4.3 Memory Area Entry/Exit

Description: Log timestamps before entering a
MemoryArea and immediately upon entering. Also
record timestamps prior to leaving the scope and
immediately after leaving the scope. Each thread will
execute at a 20 Hz frame rate.

Success Criteria: Average memory area entry time
shall be 100 microseconds or less. Average memory area
exit time shall be 100 microseconds or less.

Results: The average memory entry and exit times
were under 20 microseconds for all measured memory
types. Therefore this test passed the success criteria.
The exit times for LT Memory and VT Memory was
substantially more than for other memory areas because
the garbage collector is executed on these memory areas
when their scope is freed. See Figure 6 for a graph
mapping the time to enter and exit the various
MemoryAreas.

53

Figure 6. Average Memory Area Entry/Exit Times

4. Concluding Remarks

The experimental results in this paper indicate that
emerging RTSJ implementations are capable of
providing real-time characteristics with sufficient
performance to meet key avionics system requirements.

There are still some areas that motivate further
investigation. These areas include relative throughput to
C++ or other languages, performance of memory
management including garbage collection, and continued
investigation into timing spikes as noted in the results.
Our early results, however, indicate that the principal
prerequisite real-time characteristics for mission-critical
avionics systems are emerging in commercial
implementations and hold promise in meeting the vision
of bringing Java to large-scale DRE systems.

A second set of tests (which are not discussed in this
paper) investigates performance within an environment
that is representative of an actual avionics application,
based on our experience with reusable component-based
avionics systems on the Boeing Bold Stroke initiative.
This paper will provide insight into a comparison
between avionics mission computing applications that
have been written in both RT Java and C++ that are
based on a Bold Stroke application. We plan to publish
these latter test results when complete.

5. Acknowledgements

This benchmarking effort has been a highly
collaborative effort, with many contributors. We thank
the US Air Force Research Laboratory Information
Directorate, Wright-Patterson Air Force Base, for
guiding and sponsoring this work. James M. Urnes-Jr.
from Boeing created our initial set of RTSJ level tests.
This paper benefited substantially from review and result
interpretation insights provided by Peter Dibble at

TimeSys. Ron Cytron and Ravi Pratap at Washington
University in St. Louis contributed to this work,
especially in the context of their aspect oriented event
service named FACET, with ongoing integration results
planned for future publication [5].

[1] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D.
Hardin, and M. Turnbull, R. Belliardi, “The Real-Time
Specification for Java”. Addison-Wesley, 2000.
[2] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features
and Performance for Real-time Embedded Systems”,
Proceedings of the 8th IEEE Real-time Technology and
Applications Symposium, September 2002..
[3] D.C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development”, Software
Technology Conference, May 1998.
[4] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features
and Performance for Real-time Embedded Systems”,
Proceedings of the 8th IEEE Real-time Technology and
Applications Symposium, September 2002.
[5] F. Hunleth, R. Cytron, and C. Gill, “Building Customizable
Middleware using Aspect Oriented Programming”, OOPSLA
2001 Advanced Separation Of Concerns Workshop, Oct. 2001.

M e m o ry A re a
E n try Tim e

M e m o ry A re a
E xit Tim e

1 2 3 4
T y p e (1= H ea p , 2= Im m o rta l,
3= L T M em o ry , 4= V T M em o ry)

0

4

8

1 2

1 6

2 0
Ti

m
e

(m
ic

ro
se

co
nd

s)

54

Appendix B. IEEE RTAS ’03 Conference Paper

Evaluating Mission Critical
Large-Scale Embedded System Performance In Real-Time Java

David C. Sharp, Edward Pla, & Kenn R. Luecke

The Boeing Company, Saint Louis, Missouri, USA
{david.sharp, edward.pla, kenn.r.luecke}@boeing.com

Abstract

 Many of the benefits of Java, including its inherent
portability, networking support and simplicity, are of
increasing importance to large-scale distributed real-
time embedded (DRE) systems, but have been
unavailable due to the lack of acceptable real-time
performance. Recent work establishing the Real-Time
Specification for Java (RTSJ) [i] has led to the
emergence of associated Real-Time Java Virtual
Machines (RT JVMs) which promise to bridge this gap.
This paper describes benchmarking results on a RT JVM
in a uni-processing environment, and compares them to
both C++ implementations of similar behavior and
application requirements associated with large-scale
avionics systems. This paper extends previously
published results [ii][iii] by including avionics
application level tests.

1. Introduction

The Boeing Company is currently experimenting
with Real-Time (RT) Java as part of the Air Force
Research Laboratory (AFRL) Real-Time Java for
Embedded System (RTJES) program*. This program
investigates the use of RT Java in hard and soft large-
scale Distributed Real-Time Embedded (DRE) avionic
system applications. This paper describes the results of a
benchmarking effort to assess large-scale component-
based avionics applications on a pre-release version of
the commercial JTime RT JVM from TimeSys that
implements the RTSJ.

The overall benchmarking effort is divided into two
sets of tests. The first set of tests, discussed in prior work,
assesses the characteristics of individual RTSJ features.
The second set of tests is outlined in this paper and
investigates performance within an environment that is
more representative of an actual avionics application

* This work was sponsored by the Air Force Research Laboratory,
Wright-Patterson Air Force Base, Information Directorate, under
contract F33615-97-D-1155-0008.

based on our experience with reusable component-based
avionics systems on the Boeing Bold Stroke initiative
[iv].

The remainder of this paper is organized as follows.
Section 2 describes the experimental system and testing.
Conclusions and Acknowledgements follow in Sections 3
and 4, respectively.

2. Experimental system and testing

This section describes the configuration of both the
hardware and software elements of the test platform.

2.1. Hardware system

The same hardware, a Dell GX 150, was used for all
benchmark development and execution. This computer
has a single 1.2 GHz Pentium 4 processor, a 12 GB hard
drive, 256 MB of RAM, and 256 KB of cache memory.

2.2. Software system

Table 1 lists the major software products used
for the experiments, as well as the compiler options used
that are associated with performance. All Java tests were
run with bytecodes generated by Jikes being interpreted
in the JVM. For associated tests, the RT JVM was
executed with a memory allocation pool of 50 MB
(-Xms50M). The immortal memory size was set to 10
MB (IMMORTAL_SIZE = 10000000). The options
used by the C++ compiler were: -O3 –g –fno
-exceptions –fcheck –new. The -g option was
added to provide similar debugging capabilities to what
was available via the default options were used with the
Jikes compiler.

55

Table 1. Software packages

 C++ RT Java Java
Build
Tools

GNU Make
version 3.79.1

Apache Ant
Version 1.5.3

Compilers GNU C++
version 3.1.1

Jikes version 1.14

TimeSys
RT JVM
version
3.5.3

Run-Time
Platform

TimeSys Linux/NET for
X86 UNI version 3.1.214c

Java J2SE
with

HotSpot
version
1.4.1-2

To minimize non-deterministic system effects, all

unnecessary operating services were stopped, virtual
memory was disabled, and the system was rebooted in
between tests. Timing was begun immediately upon the
first execution of each test, without any “pre-test warm
up” period.

The application test suite consists of a flight control
function and a set of end-to-end application test
scenarios. The flight control function was designed to
investigate performance of a representative numerical
algorithm. The end-to-end test program was designed to
investigate performance of component, middleware, and
JVM interactions and behaviors in the context of a
representative cyclically executing avionics application
architecture. Application component functionality was
not designed to be representative of actual avionics
applications for these tests; the focus was on
representative application, JVM, and middleware
interactions.

2.3. Flight control algorithm test and results

The flight control function contains a representative
linear parameter varying (LPV) controller algorithm
similar to those found in embedded avionics systems.
The algorithm contains relatively heavy use of floating
point operations within matrix equations. The function
was translated from C++ to Java in order to provide a
side-by-side comparison of the C++ and Java
configurations from a computational perspective. Of
special note, the Java implementation was written to
avoid dynamic memory allocation during steady-state
operation to match existing practice in our typical C++
implementations. This algorithm did not exploit unique
real-time features, and was therefore measured in both
real-time and non-real-time Java environments for
comparison purposes.

Test Description: Measure the execution time for
the flight controls function in a continuous loop for 1000
samples. In addition to the C++ and RT Java

configurations, include the Java J2SE with HotSpot for
reference. The algorithm is run in the main program
thread, with the Java implementations using heap
memory. Execution performance results for different
RTSJ thread types is described in [3].

Performance Success Criteria: Since this test was
created to provide a relative comparison of throughput,
no specific success criteria are defined.

Performance Results: The results are shown in
Table 2. For this algorithm, the C++ implementation
performed about 40 times faster than RT Java and about
2 times faster than Java on average. The wide deviation
and the proximity of the average and minimum times
indicates the presence of timing spikes due to the non-
determinism of the plain Java implementation. Even
though memory is neither allocated nor deallocated
during execution, RT JVM tests were repeated in
immortal memory to check for any associated effects.
The RT Java average execution time using immortal
memory was measured at 3.498 milliseconds. The time
shown in Table 2 is run outside of immortal memory. As
expected for this test context, memory effects were minor
(~0.5%).

Table 2. Flight controls function execution time
(milliseconds)

 Ave Min Max Deviation
RT Java 3.479 3.474 3.565 0.092

C++ 0.085 0.085 0.097 0.013
Java 0.181 0.179 0.503 0.324

To better understand the source of the performance

differences between the different environments,
associated floating point operations were investigated.
The flight controls function contains 120 multiply, 52
divide, 118 add, and 97 subtract floating point operations.
Table 3 contains the execution times of floating point
operations in the three different environments on the test
platform.

Table 3. Individual floating point operation
execution time (nanoseconds)

Operation RT Java C++ Java
Multiply 352.5 128.6 168.7
Divide 349.3 127.6 176.8
Add 239.4 43.1 59.4

Subtract 239.4 42.6 59.4

Based on the specified numbers of each type of

floating point operation, Table 4 contains the total
execution time attributable to floating point operations in
each environment as both an absolute value and as a
percentage of the complete execution time. These results

56

indicate that floating point operations consume a small
fraction of the time in the RT Java case, and that floating
point operation is therefore not the determining factor in
the performance difference between the three
environments. Floating point time is a significant portion
of the execution in the other two environments, however.

Table 4. Total floating point operation execution
time (microseconds / % of total execution time)

RT Java C++ Java
111.9

(3.22%)
31.3

(36.81%)
42.2

(19.7%)

Because floating point performance did not represent

the deciding factor, integer performance was
investigated. Due to large number of integer operations
that are performed implicitly for array indexing and other
operations, determining the number of integer operations
of each type was not attempted. Table 5 contains the
timing associated with integer operations on the test
platform, obtained by timing a large number of
consecutive operations on prime numbers. In the worst
case (subtraction), RT Java performance was ~5.6 times
slower than C++. Since this is significantly less than the
overall performance factor for the complete flight
controls algorithm (i.e. 40 times slower for RT Java),
integer performance is also not judged to be the source of
the performance difference.

Table 5. Individual integer operation execution
time (nanoseconds)

Operation RT Java C++ Java
Multiply 58.0 11.6 19.0
Divide 90.5 12.9 45.9
Add 42.3 2.9 14.5

Subtract 42.1 4.8 14.5

The execution time difference is therefore not

primarily due to arithmetic performance. Profiling was
performed on the RT Java implementation, and no
condensed portion of the flight control algorithm was
found to be consuming a majority of the execution time.
One known overhead contributor is the RT Java bytecode
interpreter. Future investigations using ahead of time
compilation are planned to determine whether or not this
is the primary cause or whether some latent cause is
present.

2.4. End-to-end application tests and results

For the end-to-end application tests, success criteria
have been derived from key operational metrics based on

our experience with the required run-time performance of
a range of avionics systems. A mock-up operational
flight program was developed with 804 software
components instances, oscillating modal behavior, three
rate group priority threads (20Hz, 5Hz, and 1Hz), 604
event pushes per second, and 5% event correlation [v].
Further details exceed space limitations here. This
program represents the size and event behavior of a
typical avionics mission computing program. The RT
Java classes used during the test were the
RealtimeThread, Periodic Papameters, RelativeTime,
BoundAsyncEventHandler, and AsyncEvent.

Test Description: Measure the frame initiation,
periodic application processing, and infrastructure
processing for each test scenario. For the Java
implementation, execute the processing within real-time
threads (not No Heap Real-time Threads) in heap
memory (not immortal memory).

Performance Success Criteria: The software system
shall support execution of multiple periodic rates of
application components up to 20 Hz. The execution time
required for infrastructure services (e.g. middleware,
JVM, operating system) shall not exceed roughly 10% of
the total processing time for the set of services included
in this benchmark.

Performance Results: The results from the Java and
C++ 100X scenarios are illustrated in Figures 3 and 4,
respectively. Both figures display 16 seconds of
processing time (20 samples per second for 16 seconds
for 320 total samples). The two-second cyclical (40
samples at 20 Hz) processing represents the scenario’s
modal behavior, with the system changing mode each
second. The 20 Hz line represents the sum of the
processing time within each 20 Hz period for all 20 Hz
rate components. The 5 Hz line shown is obtained by
summing all of the associated component execution times
over a 200 millisecond period and dividing the sum by
four to normalize it to the 20 Hz data. Similarly, the 1 Hz
and infrastructure lines indicate the aggregate time of 1
Hz components and infrastructure processing for a 1
second period, scaled to 20 Hz periods. Thus, within each
mode, adding up the times for each rate provides the
average execution time used within each 20 Hz
processing frame. For example, if the beginning of the
RT Java time trace is observed, approximately 0.1 + 3.0
+ 4.1 + 7.6 = 14.8 milliseconds out of every 20 Hz frame
are consumed by application and infrastructure
execution, leaving 50 – 14.8 = 35.2 milliseconds of idle
time in each frame on average.

The Java successfully repeated the C++ real-time
behavior and properly supported the periodic rates. All
deadlines were achieved with 85.05% of the processor
utilization available for application processing.

 Additional application testing investigated
performance in a number of other areas, including steady

57

state determinism of periodic execution, memory usage,
long-duration execution, and scalability. These tests also
performed well within acceptable limits. The results of
these tests have been omitted due to space constraints.

0

1

2

3

4

5

6

7

8

1 23

45

67

89

11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

Figure 1. RT Java steady state execution time

0

0.5

1

1.5

2

2.5

3

3.5

1 19

37

55

73

91

10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

20 Hz Samples

N
or

m
al

iz
ed

 S
te

ad
y

St
at

e
Ex

ec
ut

io
n

Ti
m

e
(m

ill
is

ec
on

ds
)

20 Hz

5 Hz

1 Hz

Infrastructure

Figure 2. C++ steady state execution time

3. Conclusion

In general, our experiments indicate that emerging
RTSJ implementations are capable of providing the real-
time characteristics necessary to meet key avionics
system requirements considered in this paper, even when
applications exceed the number of components found in
many avionics systems. In general, measured throughput
was slower for Java, partially attributable to bytecode
interpretation in this experimentation configuration. A
recently available ahead of time compiler focuses on
mitigating these effects, but was not included in these
experiments. These results showed significant progress
towards practical applicability from earlier RTSJ
implementations. As typically experienced in business

applications, the Java implementations were judged
significantly easier to develop than the C++
implementations, although RTOS and RT JVM
configuration proved somewhat challenging. Java
development speed was significantly aided by faster
system build times due to lack of full ahead of time
compilation.

Principal remaining areas of concern for our
applications include throughput, start-up time, memory
management, distribution, and mixed language support.
Some of these investigations would require running on an
embedded target platform (e.g., without filesystems)
which were not currently supported in our
experimentation system. Our results, however, indicate
that the basic prerequisite real-time characteristics for
mission critical avionics systems are emerging in
commercial implementations and hold promise in
meeting the vision of bringing Java to large-scale real-
time embedded systems.

4. Acknowledgements

This benchmarking effort has been a highly
collaborative effort, with many contributors. We thank
the US Air Force Research Laboratory Information
Directorate, Wright-Patterson Air Force Base, for guiding
and sponsoring this work. The application tests here were
based on prior work performed on the DARPA Model-
based Integration of Embedded Software program. This
paper benefited substantially from review provided by
Peter Dibble at TimeSys. We thank James M. Urnes-Jr.,
James McDonald, Dennis Noll, and Dave Lee from
Boeing. Ron Cytron and Ravi Pratap at Washington
University in St. Louis contributed to this work,
especially in the context of their aspect oriented event
service named Framework for Aspect Composition for an
EvenT channel (FACET) [v].

[i] G. Bollella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D.
Hardin, and M. Turnbull, R. Belliardi, “The Real-Time
Specification for Java”. Addison-Wesley, 2000.
[ii] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features
and Performance for Real-time Embedded Systems”,
Proceedings of the 8th IEEE Real-Time Technology and
Applications Symposium, San Jose, CA, September 2002.
[iii] D.C. Sharp, E. Pla, K.R. Luecke, “Evaluating Real-Time
Java for Mission Critical Large-Scale Embedded System”,
Real-Time and Embedded Technology and Applications
Symposium, Washington, DC, May 2003.
[iv] D.C. Sharp, “Reducing Avionics Software Cost Through
Component Based Product Line Development”, Software
Technology Conference, May 1998.
[v] F. Hunleth, R. Cytron, and C. Gill, “Building Customizable
Middleware using Aspect Oriented Programming”, OOPSLA
2001 Advanced Separation Of Concerns Workshop, Oct. 2001.

58

List of Acronyms and Abbreviations

Acronym Description

AFRL - Air Force Research Laboratory
ANT - Another Neat Tool
AOP - Aspect Oriented Programming
AOT - Ahead Of Time Compilation
API - Application Programming Interface
CORBA - Common Object Request Broker Architecture
COTS - Commercial Off The Shelf
DARPA - Defense Advance Research Projects Agency
ERM - Event Registration Manager
FACET - Framework for Aspect Composition for an EvenT Channel
GUI - Graphical User Interface
IEIST - Insertion of Embedded Infosphere Support Technologies
JBI - Joint Battle Infosphere
JCP - Java Community Process
JDK - Java Development Kit
JPL - Jet Propulsions Laboratory
JSR - Java Specification Request
JVM - Java Virtual Machine
LT - Linear Time
MoBIES - Model-Based Integration of Embedded Software
NAV - Navigation Steering
NCO - Network Centric Operations
NHRT - No Heap Real-Time
OEP - Open Experiment Platform
OFP - Operational Flight Program
ORB - Object Request Broker
POSIX - Portable Operating Systems Interface Standard
RI - Reference Implementation
RT - Real-Time
RTAS - Real-Time and Embedded Technology and Application Symposium
RTE - Route Threat Evaluator
RTJES - Real-Time Java for Embedded Systems
RTSJ - Real-Time Specification for Java
RTSS - International Real-Time Systems Symposium
TAC - Tactical Steering
TCK - Technology Compatibility Kit
TIM - Technical Interchange Meeting
TR - Technical Report
UCI - University of California, Irving
VT - Variable Time
WSSTS - Weapon Systems Software Technology Support
WU - Washington University
XML - Extensible Markup Language

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

